17 research outputs found

    Pasireotide Long-Acting Release Treatment for Diabetic Cats with Underlying Hypersomatotropism

    Get PDF
    BACKGROUND: Long‐term medical management of hypersomatotropism (HS) in cats has proved unrewarding. Pasireotide, a novel somatostatin analogue, decreases serum insulin‐like growth factor 1 (IGF‐1) and improves insulin sensitivity in cats with HS when administered as a short‐acting preparation. OBJECTIVES: Assess once‐monthly administration of long‐acting pasireotide (pasireotide LAR) for treatment of cats with HS. ANIMALS: Fourteen cats with HS, diagnosed based on diabetes mellitus, pituitary enlargement, and serum IGF‐1 > 1000 ng/mL. METHODS: Uncontrolled, prospective cohort study. Cats received pasireotide LAR (6–8 mg/kg SC) once monthly for 6 months. Fructosamine and IGF‐1 concentrations, and 12‐hour blood glucose curves (BGCs) were assessed at baseline and then monthly. Product of fructosamine concentration and insulin dose was calculated as an indicator of insulin resistance (Insulin Resistance Index). Linear mixed‐effects modeling assessed for significant change in fructosamine, IGF‐1, mean blood glucose (MBG) of BGCs, insulin dose (U/kg) and Insulin Resistance Index. RESULTS: Eight cats completed the trial. Three cats entered diabetic remission. Median IGF‐1 (baseline: 1962 ng/mL [range 1051–2000 ng/mL]; month 6: 1253 ng/mL [524–1987 ng/mL]; P < .001) and median Insulin Resistance Index (baseline: 812 ÎŒmolU/L kg [173–3565 ÎŒmolU/L kg]; month 6: 135 ÎŒmolU/L kg [0–443 ÎŒmolU/L kg]; P = .001) decreased significantly. No significant change was found in mean fructosamine (baseline: 494 ± 127 ÎŒmol/L; month 6: 319 ± 113.3 ÎŒmol/L; P = .07) or MBG (baseline: 347.7 ± 111.0 mg/dL; month 6: 319.5 ± 113.3 mg/dL; P = .11), despite a significant decrease in median insulin dose (baseline: 1.5 [0.4–5.2] U/kg; 6 months: 0.3 [0.0–1.4] U/kg; P < .001). Adverse events included diarrhea (n = 11), hypoglycemia (n = 5), and worsening polyphagia (n = 2). CONCLUSIONS AND CLINICAL IMPORTANCE: Pasireotide LAR is the first drug to show potential as a long‐term management option for cats with HS

    Grass pea

    No full text
    Grass pea (Lathyrus sativus L.) is a multipurpose robust grain legume crop with high nutritional value and a great potential for utilization in harsh environments. This robust crop is rightly considered as a model for sustainable agriculture. However, as a result of little breeding efforts when compared to other legume crops, grass pea potential has been underexploited. The growing interest in its use in Mediterranean-type environments, all over the world, is boosting a change. In this chapter, we review the presently available genetic resources, major breeding achievements and recent biotechnological approaches used in the improvement of grass pea, highlighting the necessary changes in grass pea research to provide a brighter future to this highly potential crop.Peer reviewe

    Recent advancement in modern genomic tools for adaptation of Lablab purpureus L to biotic and abiotic stresses: present mechanisms and future adaptations

    No full text
    Not AvailableHyacinth bean is an important traditional plant with substantial medicinal value. Being imperative, it is still less explored crop on genomic and transcriptomic scale that has indexed it as an “orphan” crop for its genome revolution. Among different crop legumes such as pigeon pea, chickpea, cowpea, soybean and common bean, hyacinth bean also serves as a significant source of nutrition for both tropical and temperate regions and execute an imperative function in fixing biological nitrogen in agriculture. Nonetheless, the productivity of hyacinth bean is restrained due to environmental and biotic cues. Thus, understanding of the genomic functions and identification of probable genes/proteins for major agronomic traits through transcriptomic approaches has become imperative to improve stress tolerance in hyacinth bean. For understanding the plant stress tolerance mechanisms, the deployment of functional genomics approaches viz., proteomics and metabolomics have become imperious in breeding programs in developing countries. These approaches have been successfully used in other legume crops to create protein reference maps and their exploitation through comparative approaches can greatly enhance the research and understanding of hyacinth bean biological processes to changing environmental conditions. In this review, emerging epigenomics, proteomics, metabolomics and phenomics approaches and their achievements both in model/crop legumes are discussed. Additionally, the review also provides an overview of the applications of advanced proteomics, metabolomics and next-generation sequencing technologies in the discovery of candidate biomarkers for the development of agronomically refined hyacinth bean which may further ensure food and nutritional security under adverse climacteric conditions in developing countries.Not Availabl

    Plant Secondary Metabolism Engineering: Methods, Strategies, Advances, and Omics

    No full text

    Thin Cell Layer Studies of Vegetable, Leguminous and Medicinal Plants

    No full text
    corecore