8,774 research outputs found

    Reliable machine-to-machine multicast services with multi-radio cooperative retransmissions

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11036-015-0575-6The 3GPP is working towards the definition of service requirements and technical solutions to provide support for energy-efficient Machine Type Communications (MTC) in the forthcoming generations of cellular networks. One of the envisioned solutions consists in applying group management policies to clusters of devices in order to reduce control signaling and improve upon energy efficiency, e.g., multicast Over-The-Air (OTA) firmware updates. In this paper, a Multi-Radio Cooperative Retransmission Scheme is proposed to efficiently carry out multicast transmissions in MTC networks, reducing both control signaling and improving energy-efficiency. The proposal can be executed in networks composed by devices equipped with multiple radio interfaces which enable them to connect to both a cellular access network, e.g., LTE, and a short-range MTC area network, e.g., Low-Power Wi-Fi or ZigBee, as foreseen by the MTC architecture defined by ETSI. The main idea is to carry out retransmissions over the M2M area network upon error in the main cellular link. This yields a reduction in both the traffic load over the cellular link and the energy consumption of the devices. Computer-based simulations with ns-3 have been conducted to analyze the performance of the proposed scheme in terms of energy consumption and assess its superior performance compared to non-cooperative retransmission schemes, thus validating its suitability for energy-constrained MTC applications.Peer ReviewedPostprint (author's final draft

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    Combining distributed queuing with energy harvesting to enable perpetual distributed data collection applications

    Get PDF
    This is the peer reviewed version of the following article: Vazquez-Gallego F, Tuset-Peiró P, Alonso L, Alonso-Zarate J. Combining distributed queuing with energy harvesting to enable perpetual distributed data collection applications. Trans Emerging Tel Tech. 2017;e3195 , which has been published in final form at https://doi.org/10.1002/ett.3195. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.This paper presents, models, and evaluates energy harvesting–aware distributed queuing (EH-DQ), a novel medium access control protocol that combines distributed queuing with energy harvesting (EH) to address data collection applications in industrial scenarios using long-range and low-power wireless communication technologies. We model the medium access control protocol operation using a Markov chain and evaluate its ability to successfully transmit data without depleting the energy stored at the end devices. In particular, we compare the performance and energy consumption of EH-DQ with that of time-division multiple access (TDMA), which provides an upper limit in data delivery, and EH-aware reservation dynamic frame slotted ALOHA, which is an improved variation of frame slotted ALOHA. To evaluate the performance of these protocols, we use 2 performance metrics: delivery ratio and time efficiency. Delivery ratio measures the ability to successfully transmit data without depleting the energy reserves, whereas time efficiency measures the amount of data that can be transmitted in a certain amount of time. Results show that EH-DQ and TDMA perform close to the optimum in data delivery and outperform EH-aware reservation dynamic frame slotted ALOHA in data delivery and time efficiency. Compared to TDMA, the time efficiency of EH-DQ is insensitive to the amount of harvested energy, making it more suitable for energy-constrained applications. Moreover, compared to TDMA, EH-DQ does not require updated network information to maintain a collision-free schedule, making it suitable for very dynamic networks.Peer ReviewedPostprint (author's final draft

    Delay and energy consumption analysis of frame slotted ALOHA variants for massive data collection in internet-of-things scenarios

    Get PDF
    This paper models and evaluates three FSA-based (Frame Slotted ALOHA) MAC (Medium Access Control) protocols, namely, FSA-ACK (FSA with ACKnowledgements), FSA-FBP (FSA with FeedBack Packets) and DFSA (Dynamic FSA). The protocols are modeled using an AMC (Absorbing Markov Chain), which allows to derive analytic expressions for the average packet delay, as well as the energy consumption of both the network coordinator and the end-devices. The results, based on computer simulations, show that the analytic model is accurate and outline the benefits of DFSA. In terms of delay, DFSA provides a reduction of 17% (FSA-FBP) and 32% (FSA-ACK), whereas in terms of energy consumption DFSA provides savings of 23% (FSA-FBP) and 28% (FSA-ACK) for the coordinator and savings of 50% (FSA-FBP) and 24% (FSA-ACK) for end-devices. Finally, the paper provides insights on how to configure each FSA variant depending on the network parameters, i.e., depending on the number of end-devices, to minimize delay and energy expenditure. This is specially interesting for massive data collection in IoT (Internet-of-Things) scenarios, which typically rely on FSA-based protocols and where the operation has to be optimized to support a large number of devices with stringent energy consumption requirementsPeer ReviewedPostprint (published version

    LPDQ: a self-scheduled TDMA MAC protocol for one-hop dynamic lowpower wireless networks

    Get PDF
    Current Medium Access Control (MAC) protocols for data collection scenarios with a large number of nodes that generate bursty traffic are based on Low-Power Listening (LPL) for network synchronization and Frame Slotted ALOHA (FSA) as the channel access mechanism. However, FSA has an efficiency bounded to 36.8% due to contention effects, which reduces packet throughput and increases energy consumption. In this paper, we target such scenarios by presenting Low-Power Distributed Queuing (LPDQ), a highly efficient and low-power MAC protocol. LPDQ is able to self-schedule data transmissions, acting as a FSA MAC under light traffic and seamlessly converging to a Time Division Multiple Access (TDMA) MAC under congestion. The paper presents the design principles and the implementation details of LPDQ using low-power commercial radio transceivers. Experiments demonstrate an efficiency close to 99% that is independent of the number of nodes and is fair in terms of resource allocation.Peer ReviewedPostprint (author’s final draft

    Spatial storage of discrete dark solitons

    Full text link
    The interaction between a mobile discrete dark soliton (DDS) and impurities in one-dimensional nonlinear (Kerr) photonic lattices is studied. We found that the scattering is an inelastic process where the DDS can be reflected or transmitted depending on its transversal speed and the strength of the impurities. In particular, in the reflection regime, the DDS increases its transversal speed after each scattering. A method for spatial storage of DDS solutions using two impurities is discussed, where the soliton can be trapped within a storage region until it reaches the critical speed needed to be transmitted. We show, numerically, that this method allows the storage of multiple DDS simultaneously.Comment: 6 pages and 6 figure

    Commentary The Complexity of Intersectionality

    Get PDF
    Commentary to Leslie McCall's 2005 paper "The complexity of intersectionality", with a review of her main points and some critical remarks

    Organic and alike farming in Latin America: state and relevance for small-scale livestock keepers

    Get PDF
    While the organic movement is growing, its contribution to small-scale livestock farm-ing in Latin America is contentious. Secondary literature and available statistics were used for this study. Farms and area under certified organic agriculture are rising, but small-scale livestock farming is little represented. The latter is yet to be found in non-certified organic-like farms, offering locally adapted paths to securing livelihoods
    • …
    corecore