779 research outputs found

    Flavor Structure of the Nucleon Sea

    Full text link
    The recent progress on our understanding of the flavor structure of unpolarized and polarized nucleon sea is reviewed. The large flavor asymmetry between the up and down sea quark distributions is now well established. This asymmetry strongly suggests the importance of the mesonic degrees of freedom in the description of the nucleon sea. The strong connection between the flavor structure and the spin structure of the nucleon sea is emphasized. Possible future measurements for testing various theoretical models are also discussed.Comment: 5pages, 4 figures, Invited talk presented at the QNP2002 conference, Julich, June 200

    Strong Interplay between Stripe Spin Fluctuations, Nematicity and Superconductivity in FeSe

    Full text link
    Elucidating the microscopic origin of nematic order in iron-based superconducting materials is important because the interactions that drive nematic order may also mediate the Cooper pairing. Nematic order breaks fourfold rotational symmetry in the iron plane, which is believed to be driven by either orbital or spin degrees of freedom. However, as the nematic phase often develops at a temperature just above or coincides with a stripe magnetic phase transition, experimentally determining the dominant driving force of nematic order is difficult. Here, we use neutron scattering to study structurally the simplest iron-based superconductor FeSe, which displays a nematic (orthorhombic) phase transition at Ts=90T_s=90 K, but does not order antiferromagnetically. Our data reveal substantial stripe spin fluctuations, which are coupled with orthorhombicity and are enhanced abruptly on cooling to below TsT_s. Moreover, a sharp spin resonance develops in the superconducting state, whose energy (~4 meV) is consistent with an electron boson coupling mode revealed by scanning tunneling spectroscopy, thereby suggesting a spin fluctuation-mediated sign-changing pairing symmetry. By normalizing the dynamic susceptibility into absolute units, we show that the magnetic spectral weight in FeSe is comparable to that of the iron arsenides. Our findings support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations.Comment: 19 pages, 8 figure

    Flavour and Spin of the Proton and the Meson Cloud

    Get PDF
    We present a complete set of formulas for longitudinal momentum distribution functions (splitting functions) of mesons in the nucleon. It can be applied in the framework of convolution formalism to the deep-inelastic structure functions (quark distributions) of the nucleon viewed as a system composed of virtual 'mesons' and 'baryons'. Pseudoscalar and vector mesons as well as octet and decuplet baryons are included. In contrast to many approaches in the literature the present approach ensures charge and momentum conservation by the construction. We present not only spin averaged splitting functions but also helicity dependent ones, which can be used to study the spin content of the nucleon. The cut-off parameters of the underlying form factors for different vertices are determined from high-energy particle production data. This information allows one to calculate the flavour and spin content of the nucleon. The value of the Gottfried Sum Rule obtained from our model (S_G = 0.224) nicely agrees with that obtained by the NMC. In addition, we calculate the x-dependence of the \bar d - \bar u asymmetry and get an impressive agreement with a recent fit of Martin-Stirling-Roberts. The calculated axial coupling constants for semileptonic decays of the octet baryons agree with the experimental data already with SU(6) wave function for the bare nucleon. Although we get improvements for the Ellis-Jaffe Sum Rules for the proton and neutron in comparison to the naive quark model, the MCM is not sufficient to reproduce the experimental data.Comment: written in ReVTex, 53 pages, 11 PS-figure

    Polarized Parton Distributiions and Light-Front Dynamics

    Get PDF
    We present a consistent calculation of the structure functions within a light-front constituent quark model of the nucleon. Relativistic effects and the relevance of the covariance constraints are analyzed for both polarized and unpolarized parton distributions. Various models, which differ in their gluonic structure at the hadronic scale, are investigated. The results of the full covariant calculation are compared with those of a non-relativistic approximation to show the structure and magnitude of the differences.Comment: 31 pages, 9 figures, major revisio

    Hippocampus Shape Analysis and Late-Life Depression

    Get PDF
    Major depression in the elderly is associated with brain structural changes and vascular lesions. Changes in the subcortical regions of the limbic system have also been noted. Studies examining hippocampus volumetric differences in depression have shown variable results, possibly due to any volume differences being secondary to local shape changes rather than differences in the overall volume. Shape analysis offers the potential to detect such changes. The present study applied spherical harmonic (SPHARM) shape analysis to the left and right hippocampi of 61 elderly subjects with major depression and 43 non-depressed elderly subjects. Statistical models controlling for age, sex, and total cerebral volume showed a significant reduction in depressed compared with control subjects in the left hippocampus (F1,103 = 5.26; p = 0.0240) but not right hippocampus volume (F1,103 = 0.41; p = 0.5213). Shape analysis showed significant differences in the mid-body of the left (but not the right) hippocampus between depressed and controls. When the depressed group was dichotomized into those whose depression was remitted at time of imaging and those who were unremitted, the shape comparison showed remitted subjects to be indistinguishable from controls (both sides) while the unremitted subjects differed in the midbody and the lateral side near the head. Hippocampal volume showed no difference between controls and remitted subjects but nonremitted subjects had significantly smaller left hippocampal volumes with no significant group differences in the right hippocampus. These findings may provide support to other reports of neurogenic effects of antidepressants and their relation to successful treatment for depressive symptoms

    Flavor Asymmetry of the Nucleon Sea and W Boson Production

    Get PDF
    The advantage and feasibility of using WW-boson production to extract unique information on the flavor asymmetry of the uˉ\bar u and dˉ\bar d sea-quark distributions in the proton are examined. The W+W^+ and WW^- production cross section ratios in p+pp+p collisions are shown to be sensitive to the dˉ/uˉ\bar d/ \bar u ratios, and they are free from charge-symmetry-breaking and nuclear-binding effects. The feasibility for measuring these ratios at the RHIC and LHC proton-proton colliders, as well as the expected sensitivity to the dˉ/uˉ\bar d/ \bar u ratios, are also presented.Comment: 7 pages, 4 figures (updated figures

    Properties of charmed and bottom hadrons in nuclear matter: A plausible study

    Get PDF
    Changes in properties of heavy hadrons with a charm or a bottom quark are studied in nuclear matter. Effective masses (scalar potentials) for the hadrons are calculated using quark-meson coupling model. Our results also suggest that the heavy baryons containing a charm or a bottom quark will form charmed or bottom hypernuclei, which was first predicted in mid 70's. In addition a possibility of BB^--nuclear bound (atomic) states is briefly discussed.Comment: Latex, 11 pages, 3 figures, text was expanded substantially, version to appear in Phys. Lett.

    Pairing of single-cell RNA analysis and T cell antigen receptor profiling indicates breakdown of T cell tolerance checkpoints in atherosclerosis

    Get PDF
    Atherosclerotic plaques form in the inner layer of arteries triggering heart attacks and strokes. Although T cells have been detected in atherosclerosis, tolerance dysfunction as a disease driver remains unexplored. Here we examine tolerance checkpoints in atherosclerotic plaques, artery tertiary lymphoid organs and lymph nodes in mice burdened by advanced atherosclerosis, via single-cell RNA sequencing paired with T cell antigen receptor sequencing. Complex patterns of deteriorating peripheral T cell tolerance were observed being most pronounced in plaques followed by artery tertiary lymphoid organs, lymph nodes and blood. Affected checkpoints included clonal expansion of CD4+, CD8+ and regulatory T cells;aberrant tolerance-regulating transcripts of clonally expanded T cells;T cell exhaustion;Treg-TH17 T cell conversion;and dysfunctional antigen presentation. Moreover, single-cell RNA-sequencing profiles of human plaques revealed that the CD8+ T cell tolerance dysfunction observed in mouse plaques was shared in human coronary and carotid artery plaques. Thus, our data support the concept of atherosclerosis as a bona fide T cell autoimmune disease targeting the arterial wall. Wang et al. profiled T cells in atherosclerotic plaques, artery tertiary lymphoid organs, and lymph nodes in mice with advanced atherosclerosis by single-cell RNA sequencing paired with T cell antigen receptor sequencing and observed complex patterns of deteriorating peripheral T cell tolerance. Signs of CD8+ tolerance dysfunction were found also in human plaques transcriptomic data, indicating that atherosclerosis can be considered as a bona fide T cell autoimmune disease

    Transverse-target-spin asymmetry in exclusive ω\omega-meson electroproduction

    Get PDF
    Hard exclusive electroproduction of ω\omega mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modulations of the single-spin asymmetry of the cross section with respect to the transverse proton polarization are measured. They are determined in the entire kinematic region as well as for two bins in photon virtuality and momentum transfer to the nucleon. Also, a separation of asymmetry amplitudes into longitudinal and transverse components is done. These results are compared to a phenomenological model that includes the pion pole contribution. Within this model, the data favor a positive πω\pi\omega transition form factor.Comment: DESY Report 15-14
    corecore