175 research outputs found

    Quintessence reconstruction of the new agegraphic dark energy model

    Full text link
    In this paper we implement the new agegraphic dark energy model with quintessence field. We demonstrate that the new agegraphic evolution of the universe can be described completely by a single quintessence field. Its potential as a function of the quintessence field is reconstructed numerically. In particular, the analytical solution of the new agegraphic quintessence dark energy model (NAQDE) is approximately obtained in the matter-dominated epoch. Furthermore, we investigate the evolution of the NAQDE model in the ωω\omega-\omega' phase plane. It turns out that by quantum corrections, the trajectory of this model lies outside the thawing and freezing regions at early times. But at late times, it enters the freezing regions and gradually approaches to a static cosmological constant state in the future. Therefore the NAQDE should belong to the freezing model at late times. For comparison, we further extend this model by including the interaction between the NADE and DM and discuss its evolution in the ωω\omega-\omega' phase plane.Comment: 9 pages, 14 figure

    Restoring Holographic Dark Energy in Brane Cosmology

    Get PDF
    We present a generalized version of holographic dark energy arguing that it must be considered in the maximally subspace of a cosmological model. In the context of brane cosmology it leads to a bulk holographic dark energy which transfers its holographic nature to the effective 4D dark energy. As an application we use a single-brane model and we show that in the low energy limit the behavior of the effective holographic dark energy coincides with that predicted by conventional 4D calculations. However, a finite bulk can lead to radically different results.Comment: 11 pages, version published in Phys. Lett.

    Holographic dark energy with time varying c2c^2 parameter

    Full text link
    We consider the holographic dark energy model in which the model parameter c2c^2 evolves slowly with time. First we calculate the evolution of EoS parameter as well as the deceleration parameter in this generalized version of holographic dark energy (GHDE). Depending on the parameter c2c^2, the phantom regime can be achieved earlier or later compare with original version of holographic dark energy. The evolution of energy density of GHDE model is investigated in terms of parameter c2c^2. We also show that the time-dependency of c2c^2 can effect on the transition epoch from decelerated phase to accelerated expansion. Finally, we perform the statefinder diagnostic for GHDE model and show that the evolutionary trajectories of the model in srs-r plane are strongly depend on the parameter c2c^2.Comment: 16 pages, 4 figures, accepted by Astrophys Space Sc

    Interacting model of new agegraphic dark energy: observational constraints and age problem

    Full text link
    Many dark energy models fail to pass the cosmic age test because of the old quasar APM 08279+5255 at redshift z=3.91z=3.91, the Λ\LambdaCDM model and holographic dark energy models being no exception. In this paper, we focus on the topic of age problem in the new agegraphic dark energy (NADE) model. We determine the age of the universe in the NADE model by fitting the observational data, including type Ia supernovae (SNIa), baryon acoustic oscillations (BAO) and the cosmic microwave background (CMB). We find that the NADE model also faces the challenge of the age problem caused by the old quasar APM 08279+5255. In order to overcome such a difficulty, we consider the possible interaction between dark energy and dark matter. We show that this quasar can be successfully accommodated in the interacting new agegraphic dark energy (INADE) model at the 2σ2\sigma level under the current observational constraints.Comment: 12 pages, 5 figures; typos corrected; version for publication in SCIENCE CHINA Physics, Mechanics & Astronom

    Holographic Dark Energy in Braneworld Models with a Gauss-Bonnet Term in the Bulk. Interacting Behavior and the w =-1 Crossing

    Get PDF
    We apply bulk holographic dark energy in general braneworld models with a Gauss-Bonnet term in the bulk and an induced gravity term and a perfect fluid on the brane. Without making any additional assumptions we extract the Friedmann equation on the physical brane and we show that a ρ\rho-ρΛ\rho_\Lambda coupling arises naturally by the full 5D dynamics. The low-energy (late-time) evolution reveals that the effective 4D holographic dark energy behaves as ``quintom'', that is it crosses the phantom divide w=1w=-1 during the evolution. In particular, the Gauss-Bonnet contribution decreases the present value of wΛw_\Lambda, while it increases the growing rate of wΛ(z)w_\Lambda(z) with zz, in comparison with the case where such a term is absent.Comment: 16 pages, version published in Phys. Lett.

    Neutrinoless double beta decay in seesaw models

    Full text link
    We study the general phenomenology of neutrinoless double beta decay in seesaw models. In particular, we focus on the dependence of the neutrinoless double beta decay rate on the mass of the extra states introduced to account for the Majorana masses of light neutrinos. For this purpose, we compute the nuclear matrix elements as functions of the mass of the mediating fermions and estimate the associated uncertainties. We then discuss what can be inferred on the seesaw model parameters in the different mass regimes and clarify how the contribution of the light neutrinos should always be taken into account when deriving bounds on the extra parameters. Conversely, the extra states can also have a significant impact, cancelling the Standard Model neutrino contribution for masses lighter than the nuclear scale and leading to vanishing neutrinoless double beta decay amplitudes even if neutrinos are Majorana particles. We also discuss how seesaw models could reconcile large rates of neutrinoless double beta decay with more stringent cosmological bounds on neutrino masses.Comment: 34 pages, 5 eps figures and 1 axodraw figure. Final version published in JHEP. NME results available in Appendi

    The accelerated scaling attractor solution of the interacting agegraphic dark energy in Brans-Dicke theory

    Full text link
    We investigate the interacting agegraphic dark energy in Brans-Dicke theory and introduce a new series general forms of dark sector coupling. As examples, we select three cases involving a linear interaction form (Model I) and two nonlinear interaction form (Model II and Model III). Our conclusions show that the accelerated scaling attractor solutions do exist in these models. We also find that these interacting agegraphic dark energy modes are consistent with the observational data. The difference in these models is that nonlinear interaction forms give more approached evolution to the standard Λ\LambdaCDM model than the linear one. Our work implies that the nonlinear interaction forms should be payed more attention.Comment: 9 pages, 10 figures, accepted in Eur. Phys. J.

    Cosmological evolution and statefinder diagnostic for new holographic dark energy model in non flat universe

    Full text link
    In this paper, the holographic dark energy model with new infrared cut-off proposed by Granda and Oliveros has been investigated in spatially non flat universe. The dependency of the evolution of equation of state, deceleration parameter and cosmological evolution of Hubble parameter on the parameters of new HDE model are calculated. Also, the statefinder parameters rr and ss in this model are derived and the evolutionary trajectories in srs-r plane are plotted. We show that the evolutionary trajectories are dependent on the model parameters of new HDE model. Eventually, in the light of SNe+BAO+OHD+CMB observational data, we plot the evolutionary trajectories in srs-r and qrq-r planes for best fit values of the parameters of new HDE model.Comment: 11 pages, 5 figures, Accepted by Astrophys. Space Sc

    Performance issues in optical burst/packet switching

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-01524-3_8This chapter summarises the activities on optical packet switching (OPS) and optical burst switching (OBS) carried out by the COST 291 partners in the last 4 years. It consists of an introduction, five sections with contributions on five different specific topics, and a final section dedicated to the conclusions. Each section contains an introductive state-of-the-art description of the specific topic and at least one contribution on that topic. The conclusions give some points on the current situation of the OPS/OBS paradigms

    Statefinder diagnostic and stability of modified gravity consistent with holographic and new agegraphic dark energy

    Full text link
    Recently one of us derived the action of modified gravity consistent with the holographic and new-agegraphic dark energy. In this paper, we investigate the stability of the Lagrangians of the modified gravity as discussed in [M. R. Setare, Int. J. Mod. Phys. D 17 (2008) 2219; M. R. Setare, Astrophys. Space Sci. 326 (2010) 27]. We also calculate the statefinder parameters which classify our dark energy model.Comment: 12 pages, 2 figures, accepted by Gen. Relativ. Gravi
    corecore