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Abstract

We apply bulk holographic dark energy in general braneworld models with a Gauss–Bonnet term in the bulk and an induced gravity term and
a perfect fluid on the brane. Without making any additional assumptions we extract the Friedmann equation on the physical brane and we show
that a ρ–ρΛ coupling arises naturally by the full 5D dynamics. The low-energy (late-time) evolution reveals that the effective 4D holographic dark
energy behaves as “quintom”, that is it crosses the phantom divide w = −1 during the evolution. In particular, the Gauss–Bonnet contribution
decreases the present value of wΛ, while it increases the growing rate of wΛ(z) with z, in comparison with the case where such a term is absent.
© 2008 Elsevier B.V.
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1. Introduction

Holographic dark energy [1–6] is an interesting and sim-
ple idea of explaining the observed Universe acceleration [7].
It arises when the more fundamental holographic principle [8,
9] is applied in the cosmological framework [10,11] (although
there are some objections on this approach [12]). Holographic
dark energy reveals the dynamical nature of the vacuum en-
ergy by relating it to cosmological volumes. The background
on which it is based, is the black hole thermodynamics [13,14]
and the connection between the UV cut-off of a quantum field
theory, which is related to vacuum energy, and a suitable large
distance of the theory [15]. This connection, which was also
known from AdS/CFT correspondence, proves to be necessary
for the applicability of quantum field theory in large distances.
The reason is that while the entropy of a system is proportional
to its volume the black hole entropy is proportional to its area.
Therefore, the total energy of a system should not exceed the
mass of a black hole of the same size, since in this case the sys-
tem would collapse to a black hole violating the second law of
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thermodynamics. When this concept is applied to the Universe,
the corresponding vacuum energy is the holographic dark en-
ergy.

Until now, almost all works on the subject have been for-
mulated in the standard 4D framework. On the other hand,
brane cosmology [16,17] exhibits many phenomenological suc-
cesses [18]. In a recent work [19] we presented a generalized
and restored holographic dark energy in the braneworld con-
text. The basic argument was that in such a framework black
holes will in general be D-dimensional [13,14] and therefore
holographic dark energy should be considered in the bulk. Sub-
sequently, it gives rise to an effective 4D dark energy with
“inherited” holographic nature, and this one is present in the
(also arisen from the full dynamics) Friedmann equation of the
brane. In [19] we applied this bulk holographic dark energy
in a general single-brane model and we reproduced the results
of conventional 4D calculations [1–6], having in mind that the
physical interpretation is different. In [20] we applied it in a
general two-brane model with moving branes and we showed
that “quintom” behavior [21–23] arises naturally for a large pa-
rameter space area of a simple solution subclass, without the
inclusion of special fields or potential terms. In particular we
found that wΛ was larger than −1 in the past while its present
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value is wΛ0 = −1.08, and the phantom divide wΛ = −1 was
crossed at zp ≈ 0.49, a result in remarkable agreement with ob-
servations [24,25].

In this work we examine general single-brane models, in-
cluding a Gauss–Bonnet term in the bulk [26–31] (see also [32,
33] for a Gauss–Bonnet term in conventional 4D cosmology).
Such a higher-curvature combination corresponds to the lead-
ing order quantum correction to gravity, in an effective ac-
tion approach to string theory and in particular in the case
of the heterotic string [34], and its coupling is related to the
Regge slope parameter on string scale. Furthermore, the Gauss–
Bonnet combination is the only curvature squared form which
gives ghost-free self-interactions for the graviton (around flat
spacetime) [35] and maintains its zero modes of the perturba-
tions localized on the brane [36]. Fortunately, holographic de-
scription holds for braneworld Gauss–Bonnet gravity, although
the subject is not trivial since there are some ambiguities in
the case of non-flat branes away from the bulk boundary [37].
Applying bulk holographic dark energy in this framework, and
without any additional assumption, we acquire the interesting
situation of an interaction between the 4D dark energy and the
matter density of the brane. In this case, cosmological evolution
and in particular the dependence of the 4D dark energy on the
brane scale factor, acquires a correction in terms of the Gauss–
Bonnet coupling. The rest of the text is organized as follows:
In Section 2 we present the holographic dark energy in the bulk
and in Section 3 we apply it to a general single-brane model
in 4 + 1 dimensions with a Gauss–Bonnet term in the bulk. Fi-
nally, in Section 4 we discuss the physical implications of our
analysis and we summarize the obtained results.

2. Formulation of holographic dark energy in a general
bulk

In this section we display the basic results of bulk holo-
graphic dark energy, formulated in [19]. The mass MBH of a
spherical and uncharged D-dimensional black hole is related to
its Schwarzschild radius rs through [14,38]:

(2.1)MBH = rD−3
s (

√
πMD)D−3MD

D − 2

8Γ (D−1
2 )

,

where the D-dimensional Planck mass MD is related to the
D-dimensional gravitational constant GD and the usual 4-
dimensional Planck mass Mp through:

MD = G
− 1

D−2
D ,

(2.2)M2
p = MD−2

D VD−4,

with VD−4 the volume of the extra-dimensional space [14].
If ρΛD is the bulk vacuum energy, then application of holo-

graphic dark energy in the bulk gives:

(2.3)ρΛD Vol
(
SD−2) � rD−3(

√
πMD)D−3MD

D − 2

8Γ (D−1
2 )

,

where Vol(SD−2) is the volume of the maximal hypersphere in
a D-dimensional spacetime, given from:

(2.4)Vol
(
SD−2) = ADrD−1,
with

AD = π
D−1

2

(D−1
2 )! ,

(2.5)AD = (D−2
2 )!

(D − 1)!2D−1π
D−2

2 ,

for D − 1 being even or odd respectively. Therefore, by satu-
rating inequality (2.3) introducing L as a suitable large distance
(IR cut-off) and c2 as a numerical factor, the corresponding vac-
uum energy is, as usual, viewed as holographic dark energy:

(2.6)ρΛD = c2(
√

πMD)D−3MDA−1
D

D − 2

8Γ (D−1
2 )

L−2.

As was mentioned in [19], the “suitable large distance” which
is used in the definition of L in (2.6) could be the Hubble ra-
dius [39], proportional to the square root of the Hubble radius
[4], the particle horizon [10], the future event horizon [1,3,40],
or the radius of the event horizon measured on the sphere of
the horizon [5] (see also [6] for the corresponding formulation
in Chaplygin gas and tachyon holographic models). For a flat
Universe the future event horizon is the most suitable ansatz
and furthermore it is the only one that fits holographic statisti-
cal physics, namely the exclusion of those degrees of freedom
of a system that will never be observed by the effective field
theory [41].

3. Holographic dark energy in general 5D braneworld
models with a Gauss–Bonnet term in the bulk

We are interested in applying bulk holographic dark energy
in general 5D braneworld models with a Gauss–Bonnet term in
the bulk. We consider an action of the form [26,27]:

S =
∫

d4x dy
√−g

(
M3

5R − ρΛ5 + M3
5αLGB

)

(3.7)+
∫

d4x
√−γ

(
Lmat

br − V + rcM
3
5R4

)
.

In the first integral M5 is the 5D Planck mass, ρΛ5 is the bulk
cosmological constant which is identified as the bulk holo-
graphic dark energy, and R is the curvature scalar of the 5D
bulk spacetime with metric gAB . As usual,

(3.8)LGB = R2 − 4RABRAB + RABCDRABCD

is the Gauss–Bonnet term with coupling constant α, and
RABCD , RAB are respectively the Riemann and Ricci tensors.
In the second integral γ is the determinant of the induced 4D
metric γαβ on the brane, V is the brane tension and Lmat

br is an
arbitrary brane matter content. Lastly, we have allowed for an
induced gravity term on the brane, arising from radiative cor-
rections, with rc its characteristic length scale and R4 the 4D
curvature scalar [31,42,43].

In order to acquire the cosmological evolution on the brane
we use the Gaussian normal coordinates with the following
metric form [44,45]:

(3.9)ds2 = −m2(τ, y) dτ 2 + a2(τ, y) dΩ2
k + dy2.
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The brane is located at y = 0, we impose a Z2-symmetry
around it, m(τ, y = 0) = 1 and dΩ2

k stands for the metric in a
maximally symmetric 3-dimensional space with k = −1,0,+1
parametrizing its spacial curvature. Although we could as-
sume a general matter-field content [46], we consider a brane-
Universe containing a perfect fluid with equation of state p =
wρ. In this case, and after integration of the 00 and ii com-
ponents of the 5D Einstein equations around the brane, the
low-energy (ρ � V ) brane cosmological evolution is governed
by the following equation [26,31,42] (see also [28] for similar
brane solutions):

H 2 + k

a2

= (
72M6

5 − 16αρΛ5M
3
5 + 6rcV M3

5

)−1
Vρ

(3.10)+ V 2

144M6
5

− 1 −
√

1 + Λ̃

36α
(2 +

√
1 + Λ̃ )2,

where

(3.11)Λ̃ = 2αρΛ5/3M3
5 .

In (3.10) a stands as usual for the brane scale factor. In order
to acquire a form consistent with conventional 4D Friedmann
equation we make the identification:

(3.12)V = 72M3
5

3
8π

M2
p

M3
5

− 6rc

,

and we define

V1(α,ρΛ5)

(3.13)=
2αρΛ5(

3
8π

M2
p

M3
5

− 6rc)

9M6
5 ( 3

8π

M2
p

M3
5
)2 − 2αρΛ5

3
8π

M2
p( 3

8π

M2
p

M3
5

− 6rc)

,

where Mp is the 4D Planck mass. In this case brane evolution
equation (3.10) becomes:

(3.14)H 2 + k

a2
= 8π

3M2
p

ρ + V1(α,ρΛ5)ρ + 8π

3M2
p

ρΛ,

where the (effective in this higher-dimensional model) 4D dark
energy is:

ρΛ ≡ ρΛ4

= 3M2
p

2π( 1
8π

M2
p

M3
5

− 2rc)2

(3.15)− M2
p

96πα
(1 −

√
1 + Λ̃ )(2 +

√
1 + Λ̃ )2.

In the equations above ρΛ5 is the 5D bulk holographic dark
energy, which according to (2.6) is given by:

(3.16)ρΛ5 = c2 3

4π
M3

5L−2.

Relations (3.11)–(3.16) describe the low-energy (late-time)
cosmological evolution on the brane. Similarly to [19,20] the
holographic nature of ρΛ5 is the cause of the holographic na-
ture of ρΛ. Finally, the 5D Planck mass M5 is related to the
standard 4D Mp through M3

5 = M2
p/L5 (according to (2.2)),

with L5 the volume (size) of the extra dimension.
Let us make some comments here. The above expressions

in the limit α → 0 (where Λ̃ → 0 and V1(α,ρΛ5) → 0) tend
smoothly to those analyzed in [19]. However, in the presence
of the Gauss–Bonnet term (α �= 0) we observe an interesting
interacting behavior. Indeed, in (3.14) there is a coupling be-
tween ρ and V1(α,ρΛ5), that is a term depending on ρΛ5 and
therefore on ρΛ. We mention that the coupling between ρ and
ρΛ arises naturally through the full 5D dynamics and the use
of bulk holographic dark energy, and it is not a result of an
arbitrary introduction by hand, which is the usual case in inter-
acting holographic dark energy in the literature [39,47] even in
the case where a Gauss–Bonnet term is present [48].

Our final goal is to find the relation between ρΛ and the met-
ric scale factor a of the brane. However, the complex form of
the above equations makes it impossible to acquire such an ex-
pression analytically. Therefore, in the following we describe
the necessary approximations. Firstly, as we have already men-
tioned, according to (2.2) M3

5 = M2
p/L5 with L5 the volume

of the extra dimension. In this work we assume that L5 is ar-
bitrary large (but not infinite), i.e., it is larger than any other
length of the model, thus leaving brane evolution unaffected by
the bulk size or bulk boundaries and this is the reason for the
single-brane consideration. Therefore, in the calculations be-
low we impose M2

p/M3
5 = L5 � rc and 1/L5 → 0. The role

of the bulk size was investigated in [20]. Secondly, we expand
(3.13) and (3.15) in terms of the Gauss–Bonnet coupling α and
we keep only the linear term. Actually this is also a consistency
requirement since, in heterotic string theory background, the
Gauss–Bonnet form is the leading order quantum correction to
gravity, i.e., we have already kept only linear terms in α [49].
These steps lead to:

(3.17)V1(α,ρΛ5) ≡ V1(α,L) = 4

9

c2

M2
p

αL−2 +O
(
α2),

(3.18)ρΛ = 3c2 1

128π2
M2

pL−2
(

1 + α
c2

24π
L−2

)
+O

(
α2).

Finally, we have to determine the cosmological length L which
is present in the bulk holographic dark energy expression (3.16)
and has been transferred to relations (3.17), (3.18), too. In the
following we will consider a flat Universe, in order to safely use
the future event horizon to define L, without entering into the
relevant discussion of the literature concerning the IR cut-off
in non-flat cases [1,3–5,40]. However, the model of the present
work, such as the majority of braneworld models of the liter-
ature, is not maximally isotropic and this feature makes the
analytical calculation of the future event horizon an impossi-
ble task. In this anisotropic case we can alternatively use the
4D future event horizon Rh (the 4D spacetime is the maximally
isotropic subspace of the model), without losing the qualitative
behavior of the observables. Fortunately, the calculations in the
simple case without a Gauss–Bonnet term [19], showed that the
use of the 4D future event horizon leads to identical quantita-
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tive results comparing to those obtained within the traditional
holographic dark energy [1–6].

Using the above approximations we obtain the following
form for the effective 4D holographic dark energy:

(3.19)ρΛ = 3c2 1

128π2
M2

pR−2
h

(
1 + α

c2

24π
R−2

h

)
,

and substitution to Friedmann equation (3.14), for the flat-
Universe case, gives:

H 2 = 8π

3M2
p

ρ

(
1 + α

c2

6π
R−2

h

)

(3.20)+ c2

16π
R−2

h

(
1 + α

c2

24π
R−2

h

)
.

In these relations, the 4D future event horizon Rh is given as
usual by:

(3.21)Rh = a

∞∫
a

da′

Ha′2
.

Finally, we have to insert in (3.20) the known form for ρ(a),
namely ρ = ρ0a

−3, with ρ0 its present value.
The aforementioned integral equations determine com-

pletely the brane evolution, in the low-energy limit, and up to
first order in terms of the Gauss–Bonnet coupling α. In the limit
α → 0 these expressions coincide with those extracted in [19].
However, in the presence of the Gauss–Bonnet term the im-
plications are significant. Firstly, 4D holographic dark energy
ρΛ, apart from the usual squared holographic term, acquires a
quartic correction. Secondly, matter density ρ is coupled with a
holographic term ∝ R−2

h , which is a result of ρ–ρΛ interaction
of Eq. (3.14).

Analytical solution of Eqs. (3.19)–(3.21), namely finding
H(a), then Rh(a), and finally ρΛ(a), is impossible. However,
we are not interested in investigating the complete evolution but
only in revealing the form of ρΛ(a). Thus, we generalize Li’s
steps to construct a differential equation using ΩΛ as the un-
known function [1].

Firstly, we insert the usual variables: ΩΛ = 8πρΛ

3M2
pH 2 , ΩM =

8πρ

3M2
pH 2 . Relation (3.19) then gives:

(3.22)Rh = c1√
ΩΛH

+ αc2

√
ΩΛH

up to O(α2), with c1 = c
4
√

π
and c2 = c

12
√

π
. Inserting this form

in (3.21) and using the variable x = lnα we obtain:

(3.23)

∞∫
x

dx

Ha
= 1

a

(
c1√

ΩΛH
+ αc2

√
ΩΛH

)
.

Similarly, using ΩΛ, ΩM , and Rh from (3.22), Friedmann
equation (3.14) (with V1(α,ρΛ5) given by (3.17)) up to O(α2)

writes:

(3.24)1 − ΩΛ = ΩM

(
1 + α2c3ΩΛH 2),
where c3 = 32π/3. In order to proceed forward we have to as-
sume an explicit ΩM(a) dependence. In the interacting case at
hand this should be different from the known ∼ a−3 behavior
of standard cosmology. However, in our model the ρ–ρΛ inter-
action is downgraded by the extra-dimensional size as can be
seen in (3.13) or equivalently in (3.17). Therefore, the devia-
tion from conventional evolution will not be significant and we
can use ΩM = Ω0

MH 2
0 H−2a−3 with Ω0

M and H0 the present
values. Thus, we obtain:

(3.25)
1

Ha
=

√
a
√

1 − ΩΛ√
Ω0

MH0

[
1 − αc3ΩΛ

Ω0
MH 2

0

a3(1 − ΩΛ)

]
.

Finally, substituting this relation to (3.23) and taking derivative
with respect to x, up to O(α2) we acquire the following differ-
ential equation:

(3.26)Ω ′
Λ = Q1(ΩΛ) + αQ2(ΩΛ,a),

where

(3.27)Q1(ΩΛ) = Ω2
Λ(1 − ΩΛ)

[
1

ΩΛ

+ 2

c1
√

ΩΛ

]
,

and

Q2(ΩΛ,a) = Ω0
MH 2

0

c1a3

{
(c2 − c3c1)

[
−5Ω2

Λ

(3.28)+ Q1(ΩΛ)

(
1

ΩΛ

− 1

)−1]
− 2c3Ω

5/2
Λ

}
,

and the prime denotes the derivative with respect to x. Note that
in the limit α → 0, differential equation (3.26) tends smoothly
to that obtain by Li in [1], namely Ω ′

Λ = Q1(ΩΛ), and can
be easily solved analytically. In the α �= 0 case of the present
work such an exact solution is impossible. However, under the
identification ρΛ(a) ∼ a−3(1+wΛ), we can extract the form of
wΛ(z) at late times, i.e., at small z, with z = a0

a
− 1 and a0 the

value of a at present time (for simplicity we set a0 = 1). We
proceed as follows:

Firstly, expanding lnρΛ we obtain:

lnρΛ = lnρΛ

∣∣
0 + d lnρΛ

d lna

∣∣∣∣
0
lna

(3.29)+ 1

2

d2 lnρΛ

d(lna)2

∣∣∣∣
0
(lna)2 +O

(
(lna)3),

where the derivatives are calculated at the present time a0 = 1
[1]. Therefore, through ρΛ(a) ∼ a−3(1+wΛ) we make the iden-
tification:

wΛ = −1 − 1

3

[
d lnρΛ

d lna

∣∣∣∣
0
+1

2

d2 lnρΛ

d(lna)2

∣∣∣∣
0

lna

(3.30)+O
(
(lna)2)].

Now, using Friedmann equation (3.24), and the expressions
ΩΛ = 8πρΛ

3M2
pH 2 and ΩM = Ω0

MH 2
0 H−2a−3, we find:

(3.31)

ρΛ = 3M2
pΩΛ

8π

Ω0
MH 2

0

a3(1 − ΩΛ)

[
1 + α2c3ΩΛ

Ω0
MH 2

0

a3(1 − ΩΛ)

]
,
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up to O(α2). Therefore, differentiating this relation with respect
to lna = x, and using (3.26) for the calculation of the deriva-
tives, we finally obtain the following wΛ expression:

(3.32)wΛ(z) = w0 + w1z + α(w2 + w3z),

where

(3.33)w0 = −1

3
− 2

3c1

√
Ω0

Λ,

(3.34)w1 = 1

6c1

√
Ω0

Λ

(
1 − Ω0

Λ

)(
1 +

2
√

Ω0
Λ

c1

)
,

w2 = 2

3c1

Ω0
Λ

1 − Ω0
Λ

[
b1c1 + 2b2b3c1

(3.35)−
√

Ω0
Λ(b1 + b2b3 − c1c3b2)

]
,

w3 = − 1

6c2
1

Ω0
Λ

1 − Ω0
Λ

{−4(b1 + 2b2b3)c
2
1

+ c1(7b1 + 15b2b3 − 3b2c1c3)

√
Ω0

Λ

+ (8b2c1c3 − 6b1 − 8b2b3)Ω
0
Λ

+ c1
[
b1 − b2(3b3 + c1c3)

](
Ω0

Λ

)3/2

(3.36)+ 2
[
b1 + 2b2(b3 − c1c3)

](
Ω0

Λ

)2}
.

In the expressions above we have used the constants b1 =
2c3c4, b2 = c4/c1 and b3 = c2 − c3c1, where c4 = Ω0

MH 2
0 .

Moreover, since a0 = 1, we have replaced lna = − ln(1 + z) ≈
−z. Finally, Ω0

Λ is the present value of ΩΛ.
Relation (3.32) is the main result of this work and pro-

vides the Gauss–Bonnet correction to the corresponding result
of [19]. Both investigations are formulated in the framework of
bulk holographic dark energy. Therefore, although in the limit
α → 0, (3.32) coincides with Li’s expression in [1], namely
wΛ(z) = w0 + w1z, the physical explanation in the present
case comes through the 5D holographic consideration. This
is the reason of the difference in constants between this work
and [1].

From (3.32) it becomes obvious, that according to the value
of c which is present in ρΛ5-relation (3.16), of c4 and of the
Gauss–Bonnet coupling constant α, one can obtain a 4D holo-
graphic dark energy behaving as phantom [50], quintessence
or quintom [21,22], i.e., crossing the phantom divide wΛ = −1
[23,43] during the evolution. Additionally, one can use obser-
vational results concerning dark energy evolution [24,25] in
order to estimate the bounds of the constant c of [1], i.e., the
bounds of c1 of the present work. In particular, observational
data from type Ia supernovae give the best-fit value c1 = 0.21
within 1-σ error range [51], while those from the X-ray gas
mass fraction of galaxy clusters lead to c1 = 0.61 within 1–σ

[52]. Similarly, combining data from type Ia supernovae, cos-
mic microwave background radiation and large scale structure
give the best-fit value c1 = 0.91 within 1-σ [53], while com-
bining data from type Ia supernovae, X-ray gas and baryon
acoustic oscillation lead to c1 = 0.73 as a best-fit value within
1-σ [54]. Inserting this range of c1 values into our model one
finds that w0 < −1 and w1 > 0, thus, within 1-σ , he obtains
a quintom-type holographic dark energy. Furthermore, w2 < 0
while w3 > 0 and therefore the Gauss–Bonnet contribution de-
creases the present value of wΛ, while it increases the growing
rate of wΛ(z) with z, in comparison with the case where such a
term is absent. However, the quantitative correction of the α �= 0
case will be very small, for reasonable c4 values. The reason is
that, as we have mentioned, the ρ–ρΛ coupling, which arose
naturally as a term V1(α,ρΛ5)ρ in (3.14), is downgraded by the
extra-dimensional size as can be seen in (3.13) or equivalently
in (3.17) (where we acquire an L2 in the denominator). Thus,
making the assumption that L5 is arbitrary large we downgrade
the Gauss–Bonnet correction, too. It should be interesting to in-
vestigate the case where the bulk-size is smaller than the future
event horizon, as in the two-brane model of [20,55], but with the
inclusion of a Gauss–Bonnet term. The subject is under investi-
gation. Finally, note that the role of the Gauss–Bonnet term on
the w = −1 crossing has been investigated both in conventional
4D [32] and in braneworld frameworks [29,31]. The novel fea-
ture of our work is the combined investigation of such a term
with the bulk holographic dark energy.

4. Discussion–conclusions

In this work we apply bulk holographic dark energy in a
general braneworld model, with an induced gravity term and a
perfect fluid on the brane, and a Gauss–Bonnet term in the bulk.
Such a generalized bulk version of holographic dark energy is
necessary if we desire to match the successes of brane cosmol-
ogy in both theoretical and phenomenological-observational
level, with the successful, simple, and inspired by first prin-
ciples, notion of holographic dark energy in conventional 4D
cosmology. In particular, as we showed in [19], the bulk space
is the natural framework for the cosmological application, con-
cerning dark energy, of holographic principle, since it is the
maximally-dimensional subspace that determines the properties
of quantum-field and gravitational theory, and the black hole
formation. Subsequently, this bulk holographic dark energy will
give rise to an effective 4D dark energy with “inherited” holo-
graphic nature, and this one will be present in the effective
Friedmann equation.

Taking the Gauss–Bonnet combination into account, a ρ–ρΛ

coupling appears in the Friedmann equation of the brane. We
mention that this term arises naturally and is not a result of
an inclusion by hand, which is the usual case of 4D interact-
ing holographic dark energy in the literature [39,47,48]. This
fact makes bulk holographic dark energy in the Gauss–Bonnet
framework an interesting subject for further investigation.

Examining the low-energy (late-time) evolution of the afore-
mentioned model, we acquire the relation of wΛ(z) up to O(α2)

and O(z2). In the limit α → 0 we re-obtain the results of [19]
and those of conventional 4D calculations [1–6], although in the
5D study the interpretation and explanation of these results is
fundamentally different. In the presence of Gauss–Bonnet com-
bination, and taking into account the constraints on the values
of the constants by observational data, we find that the effec-
tive 4D holographic dark energy behaves as a quintom, i.e., it
crosses the phantom divide wΛ = −1 during the evolution. In
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particular, we observe that the presence of a non-zero α makes
the current value of wΛ smaller, while it increases its grow-
ing rate with z, comparing to the α = 0 case. However, the
corresponding quantitative correction is very small due to the
diminution of the ρ–ρΛ coupling by the arbitrary large extra-
dimensional size. Yet, it should be interesting to investigate the
case where the bulk size is smaller than the future event horizon.
Then, the ρ–ρΛ coupling would be significant and we would
naturally acquire the advantages of interacting holographic dark
energy, such as the coincidence problem solution, and the cor-
responding effects on wΛ(z).
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