7,626 research outputs found
Synthesizing attractors of Hindmarsh-Rose neuronal systems
In this paper a periodic parameter switching scheme is applied to the
Hindmarsh-Rose neuronal system to synthesize certain attractors. Results show
numerically, via computer graphic simulations, that the obtained synthesized
attractor belongs to the class of all admissible attractors for the
Hindmarsh-Rose neuronal system and matches the averaged attractor obtained with
the control parameter replaced with the averaged switched parameter values.
This feature allows us to imagine that living beings are able to maintain vital
behavior while the control parameter switches so that their dynamical behavior
is suitable for the given environment.Comment: published in Nonlinear Dynamic
Physicians Infrequently Adhere to Hepatitis Vaccination Guidelines for Chronic Liver Disease
Background and Goals:Hepatitis A (HAV) and hepatitis B (HBV) vaccination in patients with chronic liver disease is an accepted standard of care. We determined HAV and HBV vaccination rates in a tertiary care referral hepatology clinic and the impact of electronic health record (EHR)-based reminders on adherence to vaccination guidelines.Methods:We reviewed the records of 705 patients with chronic liver disease referred to our liver clinic in 2008 with at least two follow-up visits during the subsequent year. Demographics, referral source, etiology, and hepatitis serology were recorded. We determined whether eligible patients were offered vaccination and whether patients received vaccination. Barriers to vaccination were determined by a follow-up telephone interview.Results:HAV and HBV serologic testing prior to referral and at the liver clinic were performed in 14.5% and 17.7%; and 76.7% and 74% patients, respectively. Hepatologists recommended vaccination for HAV in 63% and for HBV in 59.7% of eligible patients. Patient demographics or disease etiology did not influence recommendation rates. Significant variability was observed in vaccination recommendation amongst individual providers (30-98.6%), which did not correlate with the number of patients seen by each physician. Vaccination recommendation rates were not different for Medicare patients with hepatitis C infection for whom a vaccination reminder was automatically generated by the EHR. Most patients who failed to get vaccination after recommendation offered no specific reason for noncompliance; insurance was a barrier in a minority.Conclusions:Hepatitis vaccination rates were suboptimal even in an academic, sub-speciality setting, with wide-variability in provider adherence to vaccination guidelines. © 2013 Thudi et al
The analysis on the single particle model of CDW
Gruner put forward a single particle model of charge-density wave, which is a
typical nonlinear differential equation, and also a mathematical model of
pendulum. This Letter analyzes the solution of equation by the rotated vector
fields theory, providing the relation between the applied field E and the
periodic solution, and the conclusion that the critical value of E for the
periodic solution is fixed in the over-damped situation. With these
conclusions, it derives the formulae of nonlinear conductivity, narrow-band
noise, which are consistent with the empirical ones given by Fleming.Comment: This is a version with a physics focus, the part with a mathematical
focus is submitted at arXiv:0807.328
Nanoscale atomic waveguides with suspended carbon nanotubes
We propose an experimentally viable setup for the realization of
one-dimensional ultracold atom gases in a nanoscale magnetic waveguide formed
by single doubly-clamped suspended carbon nanotubes. We show that all common
decoherence and atom loss mechanisms are small guaranteeing a stable operation
of the trap. Since the extremely large current densities in carbon nanotubes
are spatially homogeneous, our proposed architecture allows to overcome the
problem of fragmentation of the atom cloud. Adding a second nanowire allows to
create a double-well potential with a moderate tunneling barrier which is
desired for tunneling and interference experiments with the advantage of
tunneling distances being in the nanometer regime.Comment: Replaced with the published version, 7 pages, 3 figure
Systematic decay studies of even-even ^Nd, ^Gd, ^Hg and ^Pb isotopes
The alpha and cluster decay properties of the ^Nd, ^Gd,
^Hg and ^Pb even-even isotopes in the two mass regions A =
130-158 and A = 180-198 are analysed using the Coulomb and Proximity Potential
Model. On examining the clusters at corresponding points in the cold valleys
(points with same A_2) of the various isotopes of a particular nucleus we find
that at certain mass numbers of the parent nuclei, the clusters emitted are
getting shifted to the next lower atomic number. It is interesting to see that
the change in clusters appears at those isotopes where a change in shape is
occurring correspondingly. Such a change of clusters with shape change is
studied for the first time in cluster decay. The alpha decay half lives of
these nuclei are computed and these are compared with the available
experimental alpha decay data. It is seen that the two are in good agreement.
On making a comparison of the alpha half lives of the normal deformed and super
deformed nuclei, it can be seen that the normal deformed ^Nd, ^Hg
and ^Pb nuclei are found to be better alpha emitters than the super
deformed (in excited state) ^Nd, ^Hg and ^Pb nuclei. The
cluster decay studies reveal that as the atomic number of the parent nuclei
increases the N \neq Z cluster emissions become equally or more probable than
the N=Z emissions. On the whole the alpha and cluster emissions are more
probable from the parents in the heavier mass region (A=180-198) than from the
parents in the lighter mass region (A= 130-158). The effect of quadrupole
({\beta}_2) and hexadecapole ({\beta}_4) deformations of parent and fragments
on half life times are also studied.Comment: 42 pages,19 figure
Chaos, Fractals and Inflation
In order to draw out the essential behavior of the universe, investigations
of early universe cosmology often reduce the complex system to a simple
integrable system. Inflationary models are of this kind as they focus on simple
scalar field scenarios with correspondingly simple dynamics. However, we can be
assured that the universe is crowded with many interacting fields of which the
inflaton is but one. As we describe, the nonlinear nature of these interactions
can result in a complex, chaotic evolution of the universe. Here we illustrate
how chaotic effects can arise even in basic models such as homogeneous,
isotropic universes with two scalar fields. We find inflating universes which
act as attractors in the space of initial conditions. These universes display
chaotic transients in their early evolution. The chaotic character is reflected
by the fractal border to the basin of attraction. The broader implications are
likely to be felt in the process of reheating as well as in the nature of the
cosmic background radiation.Comment: 16 pages, RevTeX. See published version for fig
Improving access to health care for chronic hepatitis B among migrant Chinese populations: a systematic mixed methods review of barriers and enablers.
Migrant Chinese populations in Western countries have a high prevalence of chronic hepatitis B but often experience poor access to healthcare and late diagnosis. This systematic review aimed to identify obstacles and supports to timely and appropriate health service use among these populations. Systematic searches resulted in 48 relevant studies published between 1996 and 2015. Data extraction and synthesis were informed by models of healthcare access that highlight the interplay of patient, provider and health system factors. There was strong consistent evidence of low levels of knowledge among patients and community members; but interventions that were primarily focused on increasing knowledge had only modest positive effects on testing and/or vaccination. There was strong consistent evidence that Chinese migrants tend to misunderstand the need for healthcare for hepatitis B and have low satisfaction with services. Stigma was consistently associated with hepatitis B and there was weak but consistent evidence of stigma acting as a barrier to care. However, available evidence on the effects of providing culturally appropriate services for hepatitis B on increasing uptake is limited. There was strong consistent evidence that health professionals miss opportunities for testing and vaccination. Practitioner education interventions may be important but evidence of effectiveness is limited. A simple prompt in patient records for primary care physicians improved the uptake of testing; and a dedicated service increased targeted vaccination coverage for new-borns. Further development and more rigorous evaluation of more holistic approaches that address patient, provider and system obstacles are needed
The 492 GHz emission of Sgr A* constrained by ALMA
We report linearly polarized continuum emission properties of Sgr A* at 492 GHz, based on the Atacama Large Millimeter Array (ALMA) observations. We used the observations of the likely unpolarized continuum emission of Titan, and the observations of C\textsc{i} line emission, to gauge the degree of spurious polarization. The Stokes I flux of 3.60.72 Jy during our run is consistent with extrapolations from the previous, lower frequency observations. We found that the continuum emission of Sgr A* at 492 GHz shows large amplitude differences between the XX and the YY correlations. The observed intensity ratio between the XX and YY correlations as a function of parallactic angle may be explained by a constant polarization position angle of 1583. The fitted polarization percentage of Sgr A* during our observational period is 14\%1.2\%. The calibrator quasar J1744-3116 we observed at the same night can be fitted to Stokes I = 252 mJy, with 7.9\%0.9\% polarization in position angle P.A. = 4.14.2. The observed polarization percentage and polarization position angle in the present work appear consistent with those expected from longer wavelength observations in the period of 1999-2005. In particular, the polarization position angle at 492 GHz, expected from the previously fitted 1677 intrinsic polarization position angle and (-5.60.7)10 rotation measure, is 155, which is consistent with our new measurement of polarization position angle within 1. The polarization percentage and the polarization position angle may be varying over the period of our ALMA 12m Array observations, which demands further investigation with future polarization observations
Disorder-enhanced delocalization and local-moment quenching in a disordered antiferromagnet
The interplay of disorder and spin-fluctuation effects in a disordered
antiferromagnet is studied. In the weak-disorder regime (W \le U), while the
energy gap decreases rapidly with disorder, the sublattice magnetization,
including quantum corrections, is found to remain essentially unchanged in the
strong correlation limit. Magnon energies and Neel temperature are enhanced by
disorder in this limit. A single paradigm of disorder-enhanced delocalization
qualitatively accounts for all these weak disorder effects. Vertex corrections
and magnon damping, which appear only at order (W/U)^4, are also studied. With
increasing disorder a crossover is found at W \sim U, characterized by a rapid
decrease in sublattice magnetization due to quenching of local moments, and
formation of spin vacancies. The latter suggests a spin-dilution behavior,
which is indeed observed in softened magnon modes, lowering of Neel
temperature, and enhanced transverse spin fluctuations.Comment: 12 pages, includes 8 postscript figures. To appear in Physical Review
B. References adde
Extracellular Matrix Aggregates from Differentiating Embryoid Bodies as a Scaffold to Support ESC Proliferation and Differentiation
Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications. © 2013 Goh et al
- …
