Abstract

In order to draw out the essential behavior of the universe, investigations of early universe cosmology often reduce the complex system to a simple integrable system. Inflationary models are of this kind as they focus on simple scalar field scenarios with correspondingly simple dynamics. However, we can be assured that the universe is crowded with many interacting fields of which the inflaton is but one. As we describe, the nonlinear nature of these interactions can result in a complex, chaotic evolution of the universe. Here we illustrate how chaotic effects can arise even in basic models such as homogeneous, isotropic universes with two scalar fields. We find inflating universes which act as attractors in the space of initial conditions. These universes display chaotic transients in their early evolution. The chaotic character is reflected by the fractal border to the basin of attraction. The broader implications are likely to be felt in the process of reheating as well as in the nature of the cosmic background radiation.Comment: 16 pages, RevTeX. See published version for fig

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019