40 research outputs found

    Ametryn removal by Metarhizium brunneum: Biodegradation pathway proposal and metabolic background revealed

    Get PDF
    Ametryn is a representative of a class of s-triazine herbicides absorbed by plant roots and leaves and characterized as a photosynthesis inhibitor. It is still in use in some countries in the farming of pineapples, soybean, corn, cotton, sugar cane or bananas; however, due to the adverse effects of s-triazine herbicides on living organisms use of these pesticides in the European Union has been banned. In the current study, we characterized the biodegradation of ametryn (100 mg L-1) by entomopathogenic fungal cosmopolite Metarhizium brunneum. Ametryn significantly inhibited the growth and glucose uptake in fungal cultures. The concentration of the xenobiotic drops to 87.75 mg L-1 at the end of culturing and the biodegradation process leads to formation of four metabolites: 2-hydroxy atrazine, ethyl hydroxylated ametryn, S-demethylated ametryn and deethylametryn. Inhibited growth is reflected in the metabolomics data, where significant differences in concentrations of L-proline, gamma-aminobutyric acid, L-glutamine, 4-hydroxyproline, L-glutamic acid, ornithine and L-arginine were observed in the presence of the xenobiotic when compared to control cultures. The metabolomics data demonstrated that the presence of ametryn in the fungal culture induced oxidative stress and serious disruptions of the carbon and nitrogen metabolism. Our results provide deeper insights into the microorganism strategy for xenobiotic biodegradation which may result in future enhancements to ametryn removal by the tested strain.National Science Center, Poland (Project No. 2015/19/B/NZ9/00167

    Vitronectin Increases Vascular Permeability by Promoting VE-Cadherin Internalization at Cell Junctions

    Get PDF
    Cross-talk between integrins and cadherins regulates cell function. We tested the hypothesis that vitronectin (VN), a multi-functional adhesion molecule present in the extracellular matrix and plasma, regulates vascular permeability via effects on VE-cadherin, a critical regulator of endothelial cell (EC) adhesion.Addition of multimeric VN (mult VN) significantly increased VE-cadherin internalization in human umbilical vein EC (HUVEC) monolayers. This effect was blocked by the anti-α(V)β(3) antibody, pharmacological inhibition and knockdown of Src kinase. In contrast to mult VN, monomeric VN did not trigger VE-cadherin internalization. In a modified Miles assay, VN deficiency impaired vascular endothelial growth factor-induced permeability. Furthermore, ischemia-induced enhancement of vascular permeability, expressed as the ratio of FITC-dextran leakage from the circulation into the ischemic and non-ischemic hindlimb muscle, was significantly greater in the WT mice than in the Vn(-/-) mice. Similarly, ischemia-mediated macrophage infiltration was significantly reduced in the Vn(-/-) mice vs. the WT controls. We evaluated changes in the multimerization of VN in ischemic tissue in a mouse hindlimb ischemia model. VN plays a previously unrecognized role in regulating endothelial permeability via conformational- and integrin-dependent effects on VE-cadherin trafficking.These results have important implications for the regulation of endothelial function and angiogenesis by VN under normal and pathological conditions

    Endothelial to Mesenchymal Transition in Cardiovascular Disease: Key Mechanisms and Clinical Translation Opportunities

    Get PDF
    Endothelial to mesenchymal transition (EndMT) is a process whereby an endothelial cell undergoes a series of molecular events that lead to a change in phenotype toward a mesenchymal cell (e.g., myofibroblast, smooth muscle cell). EndMT plays a fundamental role during development, and mounting evidence indicates that EndMT is involved in adult cardiovascular diseases (CVDs), including atherosclerosis, pulmonary hypertension, valvular disease, and fibroelastosis. Therefore, the targeting of EndMT may hold therapeutic promise for treating CVD. However, the field faces a number of challenges, including the lack of a precise functional and molecular definition, a lack of understanding of the causative pathological role of EndMT in CVDs (versus being a "bystander-phenomenon"), and a lack of robust human data corroborating the extent and causality of EndMT in adult CVDs. Here, we review this emerging but exciting field, and propose a framework for its systematic advancement at the molecular and translational levels. (J Am Coll Cardiol 2019; 73: 190-209) (c) 2019 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation

    Investigating the importance of charged residues in lantibiotics

    No full text
    Lantibiotics are antimicrobial peptides which can have a broad spectrum activity against many Gram positive pathogens. Many of these peptides contain charged amino acids which may be of critical importance with respect to antimicrobial activity. We have recently carried out an in-depth bioengineering based investigation of the importance of charged residues in a representative two peptide lantibiotic, lacticin 3147, and here we discuss the significance of these findings in the context of other lantibiotics and cationic antimicrobial peptides

    Brain-derived neurotrophic factor of the cerebral microvasculature: a forgotten and nitric oxide-dependent contributor of brain-derived neurotrophic factor in the brain

    No full text
    International audienceAIM: Evidence that brain-derived neurotrophic factor (BDNF), a neurotrophin largely involved in cognition, is expressed by cerebral endothelial cells led us to explore in rats the contribution of the cerebral microvasculature to BDNF found in brain tissue and the link between cerebrovascular nitric oxide (NO) and BDNF production.METHODS: Brain BDNF protein levels were measured before and after in situ removal of the cerebral endothelium that was achieved by brain perfusion with a 0.2% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulphonate) solution. BDNF protein and mRNA levels as well as levels of endothelial NO synthase phosphorylated at serine 1177 (P-eNOSser1177 ) were measured in cerebral microvessel-enriched fractions. These fractions were also exposed to glycerol trinitrate. Hypertension (spontaneously hypertensive rats) and physical exercise training were used as experimental approaches to modulate cerebrovascular endothelial NO production.RESULTS: CHAPS perfusion resulted in a marked decrease in brain BDNF levels. Hypertension decreased and exercise increased P-eNOSser1177 and BDNF protein levels. However, BDNF mRNA levels that were increased by exercise did not change after hypertension. Finally, in vitro exposure of cerebral microvessel-enriched fractions to glycerol trinitrate enhanced BDNF production.CONCLUSION: These data reveal that BDNF levels measured in brain homogenates correspond for a large part to BDNF present in cerebral endothelial cells and that cerebrovascular BDNF production is dependent on cerebrovascular endothelial eNOS activity. They provide a paradigm shift in the cellular source of brain BDNF and suggest a new approach to improve our understanding of the link between endothelial function and cognition
    corecore