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Endothelial to mesenchymal transition (EndMT) is a process whereby an endothelial cell undergoes a series of molecular

events that lead to a change in phenotype toward a mesenchymal cell (e.g., myofibroblast, smooth muscle cell). EndMT

plays a fundamental role during development, and mounting evidence indicates that EndMT is involved in adult car-

diovascular diseases (CVDs), including atherosclerosis, pulmonary hypertension, valvular disease, and fibroelastosis.

Therefore, the targeting of EndMT may hold therapeutic promise for treating CVD. However, the field faces a number of

challenges, including the lack of a precise functional and molecular definition, a lack of understanding of the causative

pathological role of EndMT in CVDs (versus being a “bystander-phenomenon”), and a lack of robust human data

corroborating the extent and causality of EndMT in adult CVDs. Here, we review this emerging but exciting field, and

propose a framework for its systematic advancement at the molecular and translational levels. (J Am Coll Cardiol

2019;73:190–209)© 2019 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
T he endothelium is arguably one of the largest
organ systems, and data continue to emerge
regarding its heterogeneity and the many

complex functions that it performs. Importantly,
substantial evidence has implicated “endothelial
dysfunction” as contributing to a range of cardiovas-
cular diseases (CVDs). However, the broader pro-
grams whereby “endothelial dysfunction” leads to
CVD pathogenesis have been challenging to define.
Here, we review the rapidly expanding published
data implicating the endothelial to mesenchymal
transition (EndMT) as a common and potentially
disease-causal biological program in CVD,
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To place EndMT in context, it is important to first
consider epithelial to mesenchymal transition (EMT).
Our understanding of EMT has its origins in seminal
studies of embryonic development from the 1920s
and the work of Johannes Holtfreter (1). However, it
was not until the 1960s that chick embryo studies
conducted by Elizabeth Hay led to the understanding
that epithelial cells can undergo a “transformation”
and give rise to embryonic mesoderm (2). It was later
appreciated that EMT is reversible (mesenchymal to
epithelial transition [MET]), and gradually the term
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AB BR E V I A T I O N S

AND ACRONYM S

a-SMA = a-smooth muscle

actin

BMP = bone morphogenetic

protein

BMPRII = bone morphogenetic

protein type II receptor

circRNA = circular ribonucleic

acid

EC = endothelial cell

ECM = extracellular matrix

EFE = endocardial

fibroelastosis

EMT = epithelial to

mesenchymal transition

EndMT = endothelial to

mesenchymal transition

FAO = fatty acid oxidation

FGF = fibroblast growth factor

GRB2 = growth factor

receptor-bound 2

IL = interleukin

lncRNA = long noncoding

ribonucleic acid

LOXL2 = Lysyl oxidase

homolog 2

miRNA = microribonucleic acid

ncRNA = nonprotein coding

ribonucleic acid

NOS3 = nitric oxide synthase 3

(also termed endothelial nitric

oxide synthase)

PAH = pulmonary arterial

hypertension

TGF-bR = transforming growth

factor-b receptor
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“transition” has replaced “transformation.” Given
these initial studies, it is not surprising that a great
deal is known about the indispensable roles of EMT/
MET during embryonic development (which we pre-
viously reviewed from a cardiovascular perspective
[3]). However, an equally impressive body of research
also attests to the importance of EMT/MET during
adult life. While many examples exist, such as the
role played by EMT in organ fibrosis (4), perhaps the
most relevant from a translational perspective is the
role of EMT in cancer (5). While EMT is implicated in
multiple aspects of cancer, and in particular epithelial
tumor metastasis (5), it is notable that multiple tar-
geted therapies aiming to inhibit EMT in cancer are
already undergoing clinical evaluation (5). Further-
more, the inhibition of EMT is a partial effect of
several U.S. Food and Drug Administration–approved
chemotherapeutic agents that are already in use (6).

Although a vast amount has been learned about
EMT/MET, our knowledge of EndMT is far more
rudimentary. However, the endothelium is a
specialized subtype of epithelium, and therefore, as
highlighted throughout this review, it has been
possible to extend some of the prior knowledge
regarding EMT to EndMT.

A FUNCTIONAL AND MOLECULAR

DEFINITION OF EndMT

Conceptually, EndMT involves a transition from an
endothelial to a mesenchymal-like cellular state.
However, at a molecular level, there are no agreed
upon criteria for defining EndMT. This is rapidly
becoming a hindrance, as there is no standardization
and often little cross-comparability among data from
different model systems and laboratories. Moreover,
with respect to both development and CVD, the field
must take account of endothelial cellular origins and
their significant heterogeneity when considering
formal EndMT definitions. Here, we review the cur-
rent methods and systems used to study and define
EndMT.
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IN VITRO EndMT MODELS. EndMT is readily
studied using in vitro cell culture systems.
Typically, primary endothelial cells (ECs) or
EC lines are induced to undergo EndMT by
chemical or physical stimuli, with the most
widely used being the application of trans-
forming growth factor (TGF)-b for 5 to 8 days.
Again, while a lack of standardization is
problematic, an increasing tendency has been
to use TGF-b with an additional stimulus,
such as interleukin (IL)-1b (7) or hydrogen
peroxide (H2O2) (8). These in vitro models
have the advantage of providing a convenient
and controllable environment to test novel
factors and study molecular aspects of
EndMT. They also provide a supply of cells
that have undergone EndMT, which can be
studied in downstream molecular and func-
tional assays. However, a major limitation is
that cell culture conditions (e.g., media,
supplements) affect the extent and pheno-
type of EndMT.

IN VIVO EndMT MODELS. At present, 3
principal methods are used for studying
EndMT in vivo. The simplest is to perform
immunostaining for endothelial and mesen-
chymal proteins, which allows colocalization
of these markers on individual cells that
is suggestive of “transitioning” cells under-
going EndMT. However, this approach cannot
identify cells that have substantially reduced
or lost EC marker expression, and it is also
dependent on the specificity and sensitivity
of the antibodies used for immunostaining.
Furthermore, under light microscopy, the
superimposition of an EC and mesenchymal

cell can be erroneously interpreted as a single cell
undergoing EndMT.

While generally only applicable to mouse models,
endothelial-specific Cre-lox lineage tracking systems
are a more rigorous approach for studying EndMT
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CENTRAL ILLUSTRATION Endothelial to Mesenchymal Transition in Cardiovascular Disease:
Key Mechanisms and Clinical Translation Opportunities

Endothelial To Mesenchymal Transition

Role in homeostasis and disease:
- Cardiac development
- Atherosclerosis
- Valvular disease
- Fibroelastosis
- Vein graft remodeling
- Cardiac fibrosis
- Pulmonary hypertension
- Other

Key signaling pathways:
- Transforming growth factor-ββ
- Cellular metabolism
- Non-coding RNAs
- Epigenetic
- Oxidative stress and inflammation
- Wnt/β-Catenin
- Fibroblast growth factors
- Other

Kovacic, J.C. et al. J Am Coll Cardiol. 2019;73(2):190–209.

Summary of the major concepts elucidated in this paper. Adapted with permission from Kovacic (144).
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in vivo (9). Such mice are able to activate Cre-
recombinase, which can be placed under the control
of an endothelial-specific gene (e.g., VE-Cadherin).
Cre activation is used to trigger defined genetic
events, like the expression of a fluorescent marker
protein that can be used to track ECs. With careful
selection, Cre-lox systems can achieve permanent
fluorescent marking of ECs, such that they continue
to exhibit the fluorescent signal even if they undergo
EndMT and suppress endothelial gene/protein
expression. Alternatively, EC-specific Cre mouse
strains can be crossed to “floxed” strains, where Cre
activation leads to the deletion of a gene of interest.
EC-specific Cre-lox gene deletion strategies can be
used to selectively delete genes of interest that
regulate EndMT, and thus, the effects of these genes
and EndMT on differing biological processes can be
determined (10,11).

As a further method for studying EndMT in vivo
(and also in vitro), high-throughput RNA sequencing,
of bulk or single cell preparations, is a powerful tool
for studying the cellular transcriptome, whereby
endothelial and mesenchymal gene expression pat-
terns can be profiled to define the extent of EndMT.
For example, bulk RNA deep sequencing of purified
murine cells showed that following myocardial
infarction or tissue hypoxia, ECs undergo clonal
expansion and express mesenchymal genes such as
SM22a in vivo (12). In addition, due to its potential to
resolve EC signatures while concurrently showing
mesenchymal gene up-regulation at the single-cell
level, it is anticipated that single-cell RNA
sequencing will be another useful tool for studying
EndMT in vivo in human samples. Furthermore, RNA
sequencing holds promise for providing insights on
EC plasticity, which is the ability of an EC to switch its
identity, including to additional phenotypes
other than mesenchymal cells and also, having
changed identity, to revert back to an EC state (see
review [13]).
CELLULAR AND MOLECULAR ANALYSIS OF EndMT.

A diverse selection of readouts has been used to



TABLE 1 Functional Studies to Support an Altered Cellular Phenotype With EndMT

Assay Cell Characteristic (Ref. #)

Reduction of Endothelial Characteristics

EC tubule formation
in culture

Cellular ability to form tubules in culture—a defining EC
characteristic

(14,15)

Thrombin generation Cellular ability to inhibit thrombin formation (14,15)

Lectin binding Lectin binding is a defining EC characteristic (15)

LDL-uptake Ability of cells to uptake LDL cholesterol—a defining
characteristic of ECs

(15)

Enhancement of Mesenchymal Characteristics

Invasion Ability to invade through matrix and other substrates (8)

Migration Ability of cells to migrate across a transwell and/or through
micropores

(8,14)

Contraction Enhanced cell contractility with mesenchymal phenotype (14,15,60)

Collagen production Enhanced collagen production with mesenchymal
phenotype

(108)

EC ¼ endothelial cell; EndMT ¼ endothelial to mesenchymal transition; LDL ¼ low-density lipoprotein.
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demonstrate EndMT, but obligatory characteristics are
either: 1) reduced expression of endothelial genes/
proteins; 2) increased expression of mesenchymal
genes/proteins; or 3) ideally, both of these. Typically,
most investigators present 2 to 3 each of endothelial
and mesenchymal genes/proteins. Common examples
include: Endothelial: CD31, VE-Cadherin, and endo-
thelial nitric oxide synthase (NOS3); Mesenchymal;
a-smooth muscle actin (a-SMA), calponin, SM22a, and
versican. However, there is no agreement on which
genes/proteins should be studied or how many, and
the level of change required. Additional features that
are sometimes also studied include increased expres-
sion of EndMT-associated transcription factors such as
TWIST, SMAD3, ZEB2, SNAI1 and SNAI2.

Looking ahead, we propose that future studies
should seek to provide more comprehensive tran-
scriptomic and proteomic profiles of any proposed
EndMT phenomenon. Furthermore, in any individual
cell or cell population undergoing EndMT, gradations
of EndMT exist (i.e., partial vs. more complete
EndMT, reversible, transient, and so on), and there
may be relative differences in the extent of endo-
thelial gene/protein down-regulation versus mesen-
chymal up-regulation (12). This heightens the
importance of a complete portrayal of EndMT using
high-throughput techniques, whereby the balance of
endothelial gene/protein down-regulation versus
mesenchymal up-regulation is fully appreciated.

Functional and phenotypic cell changes during
EndMT are also fundamental to this process and,
thereby, to a definition of EndMT. Accordingly,
studies of EndMT are increasingly demonstrating
relevant changes in phenotypic traits (Table 1). How-
ever, yet again, no standardization exists. Indeed,
reaching a consensus on these functional cellular
aspects may be challenging, because certain EndMT-
related phenotypic features may be important in
specific contexts, but irrelevant or even opposing
in others. For example, reduced tubule formation
(i.e., angiogenesis) has been associated with EndMT
(14,15), but as an apparent paradox, at least partial
EndMT is necessary for angiogenesis (16). High-
lighting this paradox at a molecular level, the tran-
scription factor SNAI2 is expressed in angiogenic ECs
and mediates angiogenesis (16), but SNAI2 is also a key
mediator of EndMT (11). A full reconciliation of these
functional aspects will likely remain challenging until
more is understood about EndMT as a whole.

EndMT IN CARDIAC DEVELOPMENT

Heart progenitor cells arise within the embryo from
newly formed mesoderm that originates from the
primitive streak. After heart tube formation, the
endocardium and endothelium of the great vessels
are created by vasculogenesis (17–19), whereby ves-
sels form de novo from endothelial progenitors. The
endocardium likely has heterogeneous origins,
arising from endocardial-myocardial heart field pro-
genitors (17,18,20–22), and also cells that migrate in
from the yolk sac mesoderm (an extraembryonic tis-
sue) (19). Some endocardial cells express markers
of hemogenic endothelium, perhaps reflecting their
origins from yolk sac hemangioblasts (a common
progenitor of blood and vessels) (19) and the activa-
tion of the hematopoietic program within embryonic
endothelium (23).

As the heart develops, the endocardium retains
remarkable cellular plasticity. For example, the
endocardium associated with the forming ventricles
undergoes a process that resembles angiogenic
sprouting in developing vascular beds (24), leading to
the formation of endocardial domes which, together
with myocardium and extracellular matrix (ECM),
define the morphological units of trabeculation. The
endothelium of the coronary arteries and veins is also
formed by sprouting, in this case from the sinus
venosus endocardium into the myocardium (25). This
process leads to formation of an endothelial plexus
within the subepicardial ECM, which then extends
deeper into the myocardial walls (26,27). Develop-
mental patterning of the coronary vessels may then
be supplemented by adaptive angiogenesis initiated
by sprouting of endocardium from the intertrabecular
crypts into the myocardial wall, driven by hypoxia
(27–30). Trabecular endocardium also contributes to
the coronary arterial tree postnatally, as the outer



FIGURE 1 EndMT During Cardiac Development

(A) Schematic cross-section of the developing mouse heart at w10.5 days showing major chambers, forming septa, and the outflow

tract (OFT). (B) Schematic enlargement of one side of the AV canal (boxed region in A). During EndMT, ECs of the AV canal and OFT

become mesenchymal and occupy the prominent ECM swellings separating myocardium and endocardium (endocardial cushions) in those

regions. (C) Cellularized endocardial cushions are later remodeled into stratified valve leaflets. Here, a mitral valve leaflet is shown,

correctly tethered to the ventricle by papillary muscles and chordae tendineae. (D) Complex signaling networks drive endocardial cushion

formation, EndMT, expansion of cushion mesenchyme and cardiac remodeling, which are further modulated by biomechanical forces

associated with heart contraction and blood flow. Key molecular factors (see text and Figure 2) and relevant human congenital and adult

valvular diseases are indicated. AV ¼ atrioventricular; EC ¼ endothelial cell; EndMT ¼ endothelial to mesenchymal transition;

TGF ¼ transforming growth factor.
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“compact” myocardial layer undergoes expansion
(29). Blood islands form on the ventral surface of the
heart through a budding process, and these contain
an endothelium that is also derived from the
endocardium (27). Blood island endothelium ex-
presses hemogenic markers (31), suggesting that the
blood cells found within these islands are derived
from the endothelium (and hence endocardium).



FIGURE 2 TGF-b Signaling and EndMT

In ECs, TGF-b classically signals via TGF-bR2 (a type II receptor component) and AKL1 or ALK5 (type I receptor complexes). Receptor

complexes combine on the cell surface and comprise 2 type I and 2 type II components. TGF-bR2 phosphorylates (activates) type I com-

ponents, which then propagate the signal intracellularly via activation (phosphorylation; pSMAD) of SMAD 1, 2, 3, 5, or 8. Activated SMAD

proteins form complexes that include the common mediator SMAD4, and which may be inhibited by SMAD6 or SMAD7. SMAD complexes

shuttle to the nucleus, where they interact with coactivators, corepressors, and additional transcription factors, the latter including key

EndMT gatekeepers SNAI1/2, ZEB1/2, KLF4, TCF3, and TWIST. These interactions culminate in chromatin rearrangements and transcription

factor binding to endothelial, mesenchymal, and other gene promoter regions that ultimately bring about EndMT. Abbreviations as in Figure 1.
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Endocardial lineage plasticity is further highlighted
by its ability to transdifferentiate into adipocytes and
mural cells in distinct settings (32,33).

The touchstone of EndMT occurs during the for-
mation of the endocardial cushions, which are the
precursor structures for the cardiac valves (Figure 1)
(34,35). The endocardial cushions first appear as
prominent swellings of ECM (called cardiac jelly)
located between endocardium and myocardium in
the valve-forming regions of the atrioventricular (AV)
canal and outflow tract. Cushions are induced locally
by TGF-b signaling from adjacent myocardium, which
increases the synthesis of cardiac jelly ECM and
pathways that induce EndMT (34,36). At around
embryonic day 8.5 to 9.0 in the mouse, following
heart looping, a subset of endocardial cells lining the
cushions undergo EndMT and migrate into the
cushion ECM (34). Genetic lineage tracking shows
that the majority of mesenchymal cells infiltrating the
cushions are derived from endocardium (37),
although the lateral (parietal) AV valve leaflets are
composed of epicardium-derived cells (38). Cushion
infiltration is mediated by metalloproteinases and
ECM receptor signaling, and is accompanied by both
new synthesis and degradation of ECM. During
further development, cellularized cushions are
remodeled into valve leaflets with stratified mesen-
chymal and ECM layers (34), a process that relies on
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genetic and hemodynamic cues (39). Cushion
mesenchyme also contributes to the structural
fibrotic tissue that knits together the interatrial and
interventricular septal structures with the valvular
complexes (36). The outflow tract cushions are also
infiltrated by migratory cranial neural crest cells,
which contribute to outflow tract septation forming
the aortic and pulmonary trunks (34,35).

The involvement of EndMT in formation of the AV-
septal complex, and its critical role in valvulogenesis,
septation, alignment of the cardiac chambers and
vessels, and hemodynamics, creates a vulnerability
that underlies both congenital heart disease and adult
valvular disease. At the severe end of the spectrum,
aberrant cushion development may lead to complete
AV canal defect, which is typically fatal. More subtle
forms of endocardial and cushion mal-development
may contribute to a variety of congenital heart dis-
eases. For example, in the rare but serious hypo-
plastic left heart, aortic and/or mitral valve stenosis
may be a contributing factor. Likewise, pulmonary
valve stenosis is a part of the tetralogy of Fallot
(Figure 1). We focus specifically on EndMT in valvular
disease later in this paper.

SIGNALING PATHWAYS AND MECHANISMS

CONTROLLING EndMT

EndMT SIGNALING DURING DEVELOPMENT. A large
number of signaling pathways govern EndMT during
cardiac development (34–36,40). Briefly, signaling
through bone morphogenetic proteins (BMPs) and
TGF-b ligands and receptors, which is modulated by
the Hippo pathway (41), leads to endocardial expres-
sion of Snai1, Snai2, and Twist, which encode arche-
typal transcription factors regulating EndMT (36,40).
The NOTCH pathway is also essential for EndMT,
although it is not required for the initial formation of
ECM swellings (42). NOTCH ligands Delta-like 4 and
NOTCH receptors (NOTCH1-4) are expressed on AV
canal and outflow tract endocardial cells before and
throughout EndMT. When membrane-bound NOTCH1
receptor is engaged by ligand, sequential protease
cleavages release the NOTCH1 intracellular domain
(N1ICD), which migrates to the nucleus and acts as a
transcription coregulator, activating and repressing
genes that define cell identity. NOTCH1 signaling
through an alternate ligand Jagged 1, expressed from
myocardium, restrains BMP-mediated EndMT, high-
lighting the presence of negative feedback mecha-
nisms (43). NOTCH1 intracellular domain binds
directly to and positively regulates Snai1 and Snai2,
and the expressed Snai1 and Snai2 proteins repress
Ve-Cadherin transcription to allow EndMT. Signaling
pathways involving WNT/b-catenin, VEGFA/VEGFR,
and neuregulin 1/ERBB2/ERBB3; as well as transcrip-
tion factors NFATC1, GATA4, and SOX9; and ECM
proteins hyaluronan and versican are also involved in
EndMT and subsequent valve maturation (34–36,40).
As a result of these signaling pathways, endocardial-
derived cells within the cushions undergo EndMT
and adopt a fibroblastic fate. Like fibroblasts in other
connective tissues, valvular fibroblasts undergo a
maturational process akin to bone, cartilage, and
tendon formation, and the transcription factor SOX9,
which is induced by BMPs, acts as a central regulator
of ECM gene expression networks (44).

TGF-b AND THE TGF-b SUPERFAMILY. The TGF-b
superfamily is an extensive signaling network that is
considered a master regulator of EndMT and which
comprises TGF-b isoforms 1 to 4, BMPs, activins, and
related proteins (Figure 2). Among these, while TGF-
b3 and -b4 are less studied, both TGF-b1 (11,45) and
TGF-b2 (8) promote EndMT. TGF-b and other ligands
from the superfamily signal via TGF-b receptor com-
plexes (46). These receptor complexes combine
and are comprised of 2 type I and 2 type II receptor
components (4 components in total), which include
activin receptor-like kinases (ALKs) and BMP receptor
components. Also, among these are TGF-b receptor 1
and 2 (TGF-bR1 and TGF-bR2), with TGF-bR2 being a
type II receptor component. Type I receptor compo-
nents are comprised of the ALK family, which include
TGF-bR1 (also known as ALK5). In the complex, type
II receptors phosphorylate and active type I compo-
nents, which then propagate the signal intracellu-
larly. There are 7 type I and 5 type II receptor
complexes in humans; however, the binding possi-
bilities are restricted in ECs, where TGF-b binding to
TGF-bR2 can activate either of 2 type I receptors;
ALK1, which is largely restricted to ECs, or the broadly
expressed ALK5 (47,48). Accessory TGF-b receptors
may also become involved, like endoglin or betagly-
can, which modulate signaling through type I and II
receptors.

Upon type I receptor activation, TGF-b family
members regulate gene expression via SMAD tran-
scription factor activation (i.e., via phosphorylation)
(46,49). Activated SMAD proteins form complexes
and shuttle to the nucleus, where they interact with
additional transcription factors that include key reg-
ulators of EndMT: SNAI1, SNAI2, ZEB1, ZEB2, KLF4,
TCF3, and TWIST. These interactions culminate in
chromatin rearrangements and transcription factor
binding to endothelial, mesenchymal, and other
relevant gene promoter regions which induce EndMT
(46,49) (Figure 2).



FIGURE 3 Fatty Acid Oxidation Regulates EndMT

Key elements of the role of fatty acid oxidation (FAO) in regulating EndMT.

EndMT ¼ endothelial to mesenchymal transition.
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There are multiple checkpoints in this system
including the ligand BMP7 which inhibits EndMT (45),
and SMAD7, which exerts an inhibitory effect at the
transcriptional level (7). In addition, although TGF-bs
signal mainly via the SMADs (“canonical TGF-b
signaling”), they may also activate other compli-
mentary pathways (“noncanonical TGF-b signaling”).

The TGF-b signaling system also acts as a final
common mechanism for other pathways. Important
factors that intersect with TGF-b signaling include
mitogen-activated protein kinases (MAPKs), the
phosphoinositide 3-kinase (PI3K) pathway, inhibitory
microRNAs (miRNAs) such as the miR-200 family, and
others. Therefore, as well as canonical and nonca-
nonical TGF-b signaling, the TGF-b signaling system
serves to integrate these other pathways and to fine-
tune the ultimate regulatory changes governing
EndMT (7).

METABOLIC REGULATION OF EndMT. There is a
growing appreciation that cellular fate is mechanis-
tically associated with intracellular metabolism.
However, the mechanisms linking these processes are
imprecisely understood. As a new development, a
recent study suggests that EndMT may have meta-
bolic underpinnings (7). Using TGF-b1 to induce
EndMT in vitro, it was shown that TGF-b1 triggered a
reduction in mitochondrial-dependent fatty acid
oxidation (FAO) (7). In other cell types and para-
digms, TGF-b signaling had been shown to modulate
glucose metabolism (50), lipid metabolism (51), and
mitochondrial function (52). For the case of ECs, the
TGF-b–stimulated inhibition of FAO resulted in a
decline in acetyl-CoA (7). Indeed, this fall in acetyl-
CoA was an important metabolic stimulus for
EndMT, as other genetic or pharmacological strate-
gies that reduced cytosolic acetyl-CoA levels could
recapitulate the effects of TGF-b signaling (7)
(Figure 3). Notably, although FAO inhibition would
be expected to primarily alter mitochondrial acetyl-
CoA levels, the authors found that it was the cyto-
plasmic pool of acetyl-CoA that was modulating
cellular fate. These pools are not in equilibrium, and
there is growing evidence that acetyl-CoA modulates
its effects under strict spatiotemporal control (53).
These observations likely have in vivo relevance,
because it was further shown that genetic disruption
of endothelial FAO augmented the contribution of
EndMT to mitral valve development in a mouse
model (7), suggesting that targeting of endothelial
metabolism might be a therapeutic strategy to
modulate EndMT in other pathological settings.

Finally, there is an additional potential link be-
tween metabolism and EndMT. There is increasing
evidence for a role of EndMT in fibrotic disease,
including the fibrosis associated with chronic kidney
disease (54). In that sense, other studies have sug-
gested that fibrosis in chronic kidney disease is
somehow mediated by a fall in FAO (55). It is tempting
to speculate that the mechanistic link between a fall
in FAO and the increase in fibrosis is somehow related
to an altered threshold for EndMT, or through the
related process of EMT.

NONCODING RNAs IN EndMT. Nonprotein coding
ribonucleic acids (ncRNAs) play a major role in cell
fate decisions, and recent advances have also
underlined their critical role in regulating EndMT.
ncRNAs include miRNAs, long noncoding ribonucleic
acids (lncRNAs) and circular ribonucleic acids (circR-
NAs), which together could influence the entire
EndMT regulatory program.

miRNAs are small, noncoding RNAs that inhibit
the expression of their gene targets, predominantly
by inducing messenger RNA degradation or inhibiting
messenger RNA translation. In the context of EndMT,
TGF-b induces a distinct shift in EC miRNA expression
(56), suggesting their importance in the overarching
regulation of EndMT. Notably, several miRNAs
have been identified that antagonize the EndMT
transcriptional program, which are transcriptionally
suppressed by TGF-b signaling (57–62). For example,
fibroblast growth factor (FGF) 2, an antagonist of
TGF-b signaling in ECs (63), induces the expression
of miR-20a which then silences TGF-bR1 and -bR2
expression, effectively blunting canonical TGF-b



FIGURE 4 The Role of Noncoding RNAs in Regulating EndMT

Key elements of what is known about how EndMT may be controlled by noncoding RNAs.

FGFR ¼ FGF receptor; SARA ¼ SMAD anchor for receptor activation; SOS ¼ Son of seven-

less homolog; other abbreviations as in Figure 1.
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signaling (60). Chen et al. (59) also showed that
miRNA let-7 negatively regulates TGF-bR1 expression.
Similarly, miR-200a can reduce the expression of
growth factor receptor-bound 2 (GRB2), a mediator
of noncanonical TGF-b signaling (62). GRB2 plays a
vital role in the development of cardiac fibrosis (64),
a condition wherein EndMT may be present (45),
and the ectopic expression of miR-200a in ECs treated
with TGF-b blunted the EndMT response (62). Down-
stream of TGF-b receptors, miRNAs also affect the
expression of SNAI1 (e.g., miR-200b and miR-532
[57,58]), and SNAI2 (e.g., miR-630 [61]).

As well as miRNAs that directly suppress EndMT,
TGF-b induces the expression of miRNAs that affect
endothelial gene expression or that suppress in-
hibitors of mesenchymal gene transcription (65–67).
In ECs, mesenchymal gene transcription is kept
inactive by transcriptional repressors, including the
SKI proto-oncogene (c-Ski) and the ternary complex
factor ELK1. C-SKI represses TGF-b signaling by
stabilization of inactive SMAD complexes on SMAD-
binding elements (68), which is inhibited by miR-155
upon TGF-b signaling (67). Similarly, ELK1 is
repressed by miR-27b upon TGF-b signaling (66).
ELK1 competes with the mesenchymal transcription
factor MRTF in binding to serum response factor,
thereby acting as a myogenic repressor (69). The loss
of ELK1 from ECs leads to increased MRTF activity
(70) and mesenchymal gene transcription (71). Be-
sides miRNAs that affect mesenchymal gene expres-
sion, TGF-b also increases the expression of miRNAs
that suppress endothelial protein expression. Sus-
tained AKT activation facilitates EndMT (72) and
culminates in elevated expression of matrix metal-
loproteinases (73,74) that can degrade VE-Cadherin
(75). PTEN is an endogenous inhibitor of AKT activa-
tion (76) and a target of miR-21 (65), suggesting that
miR-21 inhibition can inhibit EndMT. Similarly, the
systemic delivery of miR-21 antagonists reduced the
number of cells undergoing EndMT in the cardiac
microvasculature, and altered cardiac fibrosis in mice
(65). Notably, the regulation of EndMT by miRNAs is
not limited to these examples (Figure 4), and the list
of miRNAs implicated in EndMT appears certain to
expand.

LncRNAs are a vast additional class of ncRNA that
regulate gene transcription by a variety of mecha-
nisms. Recently, GATA6-AS, a long noncoding anti-
sense transcript of GATA6, was shown to facilitate
EndMT by interacting with the histone deaminase
Lysyl oxidase homolog 2 (LOXL2) to regulate endo-
thelial gene expression via chromatin remodeling
(77). Moreover, the lncRNA MALAT1 was shown to
suppress the function of miR-145, which culminated
in increased expression of TGF-bR2 and SMAD3,
facilitating EndMT (78). However, little is currently
known about how lncRNAs are regulated and func-
tionally relevant in EndMT; an area that is important
to pursue with the improving knowledge of lncRNA
biology. Notably, lncRNAs are generally poorly
conserved across species, adding difficulty to proving
in vivo evidence of their function. This may be
particularly relevant when considering translational
animal studies targeting lncRNAs as a route to human
therapeutics.

CircRNAs are a poorly understood subset of lncRNA
that are characterized by their covalently closed loop
structures (79), with current research suggesting a
possible regulatory role for circRNAs in EMT (80). If a
regulatory role for circRNAs in EndMT is also
demonstrated, this will assuredly be a rich area for
further basic research.



FIGURE 5 Epigenetic Mechanisms and Control of EndMT

Key elements of what is known of how epigenetic changes modulate EndMT. EndMT ¼ endothelial to mesenchymal transition.
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EPIGENETIC CONTROL OF EndMT. “Epigenetic” re-
fers to heritable control of gene expression that does
not involve changes to the underlying DNA sequence.
Epigenetic control can occur at the level of DNA,
where DNA methylation induced by DNA methyl-
transferases results in silencing of gene expression, a
process that can be reversed by DNA demethylases
(e.g., TETs). In addition, various histone modifica-
tions, including acetylation and methylation, control
accessibility of transcription factors to target gene
promoter regions. Whereas multiple studies have
elucidated the epigenetic control of EMT, little is
known regarding the epigenetic control of EndMT
(Figure 5).

In EMT, expression of the SNAI1/2 family, TWIST
and ZEB1/2, is controlled by DNA methylation as well
as histone acetylation and methylation (81). Also, the
effects of transcription factors on their target genes
(e.g., E-Cadherin) are regulated by corepressors,
including the histone deacetylases, histone methyl-
transferase G9a or SUV39H1, and DNA methyl-
transferases (81). In ECs, epigenetic mechanisms at
the level of DNA methylation or histone modifica-
tions play a crucial role in the expression of EC-
specific genes and up-stream regulators. For
example, DNA methylation represses the flow-
induced transcription factors of the Krüppel-like
family Klf2 and Klf4 (82–84), which are important for
maintaining endothelial function and are involved in
EndMT (13). Likewise, the promoter of Nos3 is
repressed in non-ECs by DNA methylation and is
controlled by histone acetylation and methylation
(Figure 5) (85,86). These mechanisms regulate
endothelial-specific gene expression in response to
differing stimuli; however, whether EndMT is asso-
ciated with complete, direct, and long-lasting
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silencing of endothelial genes via epigenetic mecha-
nisms is unclear.

DNA methylation patterns are modulated under
conditions of EndMT and can indirectly interfere with
EndMT signaling. Altered DNA methylation in
response to oscillatory flow was reported in aortic
intima-media tissues from patients with aortic valve
disease (87). This study showed that methylation
patterns are distinct in dilated versus nondilated
ascending aortas, and specifically that nondilated
aortas from patients with bicuspid aortic valve dis-
ease show a methylation signature associated with
cell transformation and differentiation. Conversely,
the flow response in ascending aortas from patients
with bicuspid aortic valves involved hypo-
methylation and increased expression of Wnt/b-cat-
enin genes, whereas an angiogenic profile was
observed in the aortas of patients with tricuspid
aortic valves (87). Whether these changes in DNA
methylation are solely due to ECs and how they
causally contribute to aneurysm formation in patients
with bicuspid aortic valves will be important to un-
derstand. Additional insights regarding the epige-
netic control mechanisms of EndMT were gained in
animal models of cardiac fibrosis. Here, TGF-b1
induced DNA methylation of the promoter of the Ras
inhibitor RASAL1, thereby increasing the expression
of SNAI1, SNAI2, and TWIST and promoting EndMT
in vitro and in vivo. Interestingly, BMP7 reversed the
TGF-b1–induced RASAL1 promoter methylation and
subsequent silencing of gene expression via induc-
tion of the DNA demethylase TET3 (88). At the level of
histones, enhancer of zeste homolog-2, a methyl-
transferase of the polycomb complex, was shown to
regulate SM22a expression (89). TGF-b2 reduced
enhancer of zeste homolog-2 levels in ECs, leading to
a decrease in silencing H3K27me3 marks at the SM22a
promoter (89). Furthermore, the histone deacetylase
3 isoform HD3a was shown to induce EndMT (90).
However, this effect was likely not caused by epige-
netic control mechanisms, but was mediated via
HD3a interactions with Akt and regulation of TGF-b2
(90). Finally, as mentioned earlier, lncRNAs may
control EndMT by interfering with histone modifica-
tions, where GATA6-AS was shown to regulate EndMT
and modulate H3K4m3-dependent gene expression
by binding to LOXL2 (77).

OTHER FACTORS AND PATHWAYS INFLUENCING

EndMT. It is notable that TGF-b signaling only partly
induces EndMT (8,11,45), suggesting that additional
mechanisms are also involved. Although several
stimuli, including glucose (91), endothelin-1 (92),
angiotensin II (93), and advanced glycation
end-products (94) induce EndMT by converging with
TGF-b signaling, alternate pathways of EndMT in-
duction also exist. Among these, Jagged/NOTCH
signaling can directly induce the expression of SNAI2,
TWIST, and the mesenchymal transcription factor
RUNX3 (95–97). In addition, Wnt/b-Catenin signaling
drives EndMT via increased SNAI2 expression (98).
Interestingly, Wnt/b-Catenin–induced EndMT via
SNAI2 induction does not change SNAI1 transcripts
(99), indicating that not all transcription factors are
required for EndMT induction.

Oxidative stress is another factor that promotes
EndMT. Specifically, hydrogen peroxide (H2O2), a
classic inducer of oxidative stress, promotes EndMT
(8). Furthermore, the effect of H2O2 is additive to
TGF-b (8), and the inhibition of reactive oxygen spe-
cies can decrease oxidative stress–induced EndMT
in vitro (100). Consistent with this, EndMT is also
promoted by the inhibition of nitric oxide synthase,
which reduces the bioavailability of nitric oxide and
enhances oxidative stress (101). The importance of
oxidative stress in EndMT is being further explored,
with recent studies suggesting that oxidative stress
may promote EndMT in the setting of atherosclerosis
and renal fibrosis (102,103).

As mentioned, endogenous inhibitors of EndMT
also exist, although their mechanisms of action are
incompletely understood. FGF signaling in ECs abro-
gates TGF-b signaling by suppressing the transcrip-
tional activity of SMAD2 (104) and the induction of
miRNAs that silence TGF-b receptor expression
(59,60). BMP7 can antagonize TGF-b signaling by in-
duction of ID proteins (105), which are dominant
negative helix–loop–helix proteins that lack a DNA-
binding domain. ID proteins can heterodimerize
with SMAD2 and SMAD3, resulting in the formation of
inactive transcription factor complexes (106). Of note,
ID protein expression is reduced during EndMT (15)
and the restoration of ID protein expression can
inhibit EMT in certain tumors (107). Although these
data suggest a role for ID proteins in EndMT, this is
yet to be confirmed. Undoubtedly, many additional
pathways controlling EndMT remain to be disclosed.

CVDs AND PATHOLOGIC PROCESSES WITH

EndMT IMPLICATIONS

ATHEROSCLEROSIS AND PLAQUE EROSION. The
accumulation of mesenchymal cells, including myo-
fibroblasts, smooth muscle cells, and osteoblasts, is
central to plaque formation and atherosclerosis.
Mesenchymal cells play key roles in this disease
including proinflammatory molecule secretion; ma-
trix, collagen, and metalloproteinase production;



FIGURE 6 EndMT in Atherosclerosis and Plaque Erosion

Confocal microscopy of thoracic aortic sections from tamoxifen-induced end.SclCreERT;R26RstopYfp;ApoE-/- mice after Western diet feeding.

In this model of advanced atherosclerosis, ECs are permanently marked using a Cre-lox system such that ECs, and all EC-derived cells,

permanently express yellow fluorescence protein (Yfp). Staining for Ve-Cadherin is in red, with staining for fibroblast activation protein (Fap),

a fibroblast marker, in white. DAPI nuclear staining is in blue. YfpþFapþVe-Cadherinþ cells (arrowheads) represent endothelial-derived cells

expressing endothelial and fibroblast proteins. YfpþFapþVe-Cadherin- cells (arrows) represent endothelial-derived cells that express Fap,

but that have lost Ve-Cadherin expression. Scale bars, 100 mm. L ¼ lumen. Reproduced with permission from Evrard et al. (8).
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plaque calcification; and fibrous cap formation. As
early evidence suggesting EndMT is involved in
atherosclerosis, costaining of human atherosclerotic
plaques and porcine vessels for endothelial and
mesenchymal markers identified copositive cells in
the intima and within neointimal tissues (108). In
addition, while uniform laminar shear stress was
found to inhibit EndMT, ECs exposed to disturbed
flow (as is typical in atherosclerosis-prone regions)
underwent EndMT and showed atherogenic differ-
entiation. Gain- and loss-of-function studies estab-
lished a role for ERK5 signaling in the inhibition of
EndMT with uniform laminar shear stress (108).
Supporting these findings, Mahmoud et al. (109)
showed that low, oscillatory shear stress promotes
EndMT, whereas high shear stress is protective. In
this case, low-shear related EndMT was under the
control of SNAI1 (109) and TWIST1 (110), whereas
costaining was again suggestive of EndMT in human
atherosclerotic plaques (109). Importantly, the link
between EndMT and disturbed flow indirectly sug-
gests that EndMT may be causal for atherosclerosis.
As a sidebar, but also indirectly suggesting that
EndMT may be causal for atherosclerosis, it was
recently shown that atheroprotective high-density
lipoproteins inhibit EndMT (111).

Two studies have used Cre-lox mouse models to
study EndMT in atherosclerosis, with both showing
that EndMT plays an important role. Of these, Evrard
et al. (8) showed that the predominant EndMT-
derived cell population in atherosclerosis is
fibroblast-like cells, with a lesser contribution to
smooth muscle-like cells (Figure 6). Overall,
EndMT-derived cells comprised almost one-half of
the fibroblast population in advanced atherosclerotic
lesions. In addition, they showed that EndMT is



FIGURE 7 EndMT in Heart Valve Disease

In normal valves, valvular interstitial cells (VICs) possess a quiescent phenotype. VICs become activated in disease. EndMT in heart valves

could be initiated by mechanical stress and inflammation (CD45-positive cells). Activated VCAM1-positive endothelium undergoes endo-

thelial to mesenchymal transition (EndMT), which generates more interstitial cells. Some of these cells may undergo osteogenic trans-

formation and activation resulting in various diseases.
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associated with increased plaque vulnerability. On
the other hand, Chen et al. (10) studied a potential
link between disrupted FGF signaling, EndMT, and
atherosclerosis. In addition to lineage tracking, they
also created atherosclerotic mice with endothelial-
specific deletion of FGF receptor substrate 2a
(Frs2a). These knockout mice exhibited extensive
EndMT and developed atherosclerosis earlier than
control mice, eventually demonstrating an 84% in-
crease in total plaque burden. As a whole, their study
suggested a link between loss of protective endothe-
lial FGF signaling, development of EndMT, and pro-
gression of atherosclerosis.

It is provocative and exciting that these studies,
involving mice, large animals, and humans, have
consistently shown that EndMT is prominent in
atherosclerosis. An important next step will be to
define the exact functional role of EndMT in the
development and progression of atherosclerotic dis-
ease (vs. being an epi- or bystander-phenomenon).
Furthermore, we believe that another important step
is to investigate the role of EndMT in “plaque
erosion.” In brief, plaque erosion may lead to arterial
thrombosis and accounts for w30% of acute coronary
events (112). Mechanistically, plaque erosion occurs
without fibrous cap disruption, where blood comes
into contact with an intimal surface lacking ECs.
Supporting the hypothesis that EndMT is involved,
plaque erosion is more common in arterial bi-
furcations and areas of disturbed blood flow (112). We
speculate that if a significant proportion of ECs un-
dergo EndMT, this may lead to a disrupted endothelial
layer that culminates in plaque erosion. Subjectively,
images obtained during lineage tracking of EndMT in
atherosclerosis (8) give the impression that the loss of
ECs over the surface of plaques is related to their
migration into the plaque’s inner aspects (Figure 6).

VALVULAR DISEASE. While EndMT is critical to
valve development, low levels of EndMT likely
persist in postnatal and adult cardiac valves. As
gauged by CD31/a-SMA coexpression, w10% of ECs in
human fetal valves undergo EndMT, decreasing to
w1% in human adult valves (113). Importantly, this
raises the hypothesis that the adult valvular endo-
thelium contains a subset of cells that can undergo
EndMT to replenish the turnover of valvular
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interstitial cells (114), thus maintaining valve tissue
homeostasis.

Recent evidence implicates EndMT in valvulo-
pathies (115), and many transcriptional regulatory
mechanisms of heart valve development actively
respond to valve injury, stress, and disease (Figure 7).
Whereas interstitial valvular cells are quiescent fi-
broblasts in healthy adult valves, during disease
progression they transform into activated
myofibroblast-like cells that express a-SMA (116), and
subsequently differentiate into osteoblast- and
chondrocyte-like cells characteristic of calcific aortic
valve disease (117). Since many of the previously
mentioned fundamental pathways involved in val-
vulogenesis (e.g., NOTCH, Wnt, BMP, and TGF-b) also
participate directly in valvular calcification, the
question arises whether EndMT can generate osteo-
genic cells. The discovery that cadherin-11, which is
important for cushion formation, is re-expressed in
the endothelium and osteoblast-like interstitial cells
in adult human aortic valves may support this notion
(118). Moreover, in vivo and in vitro studies have
demonstrated the osteogenic potential of a subpop-
ulation of mitral valve ECs (119). Furthermore,
Hjortnaes et al. (120) showed that EndMT precedes
osteogenesis and that valvular interstitial cells sup-
press calcification of valvular ECs undergoing EndMT.
Recent studies also implicated inflammation and
mechanical stress in potentiating valvular EndMT
(121–123). To recapitulate the microenvironment of
mechanical strain, 2-dimensional microcontact
printing was used to mimic regions of healthy and
diseased leaflets, and to measure EndMT in sheep
valve ECs responding to low (10%, healthy) and high
(20%, disease) strain. The results suggest that dual
strain-dependent pathways regulate EndMT:
increased TGF-b yields low-strain EndMT and
increased Wnt/b-catenin signaling yields high-strain
EndMT. Furthermore, a surgical model of ischemic
mitral regurgitation in adult sheep revealed elevated
levels of a-SMA within the endothelium and inter-
stitium, indicative of EndMT (122). After myocardial
infarction, higher levels of collagen-producing a-
SMA–positive cells in malfunctioning mitral valve
subendothelium indicated a dramatically exagger-
ated EndMT process (123), which could be modulated
by losartan without reducing adaptive growth (124).

Using clinically-relevant large animal models,
collectively these reports suggest that: 1) EndMT
participates in the initial adaptive response to an
altered environment and may result in pathological
processes such as fibrosis, leading to suboptimal
valve function; and 2) proinflammatory conditions
and mechanical stress/strain might regulate EndMT
in adult valves. Furthermore, these studies demon-
strate that EndMT plays an important role in main-
taining the phenotype of valvular cells in adults, and
that certain environmental conditions may predis-
pose valvular endothelium to enhanced EndMT.

FIBROELASTOSIS. Endocardial fibroelastosis (EFE) is
a rare disorder characterized by a unique fibrosis
involving the ventricular endocardium, which re-
stricts ventricular growth in infants and children. EFE
is typically associated with prenatal cardiac abnor-
malities, most notably in lesions with left heart
obstruction including Barth and hypoplastic left heart
syndrome (125). Often, the only therapeutic option is
surgical univentricular palliation, which is associated
with high mortality rates (126). Hence, EFE is of major
clinical importance, yet the mechanisms underlying
this disease are poorly understood.

Novel mouse models that mimic human EFE now
permit studies of the origin of EFE tissues and their
mechanisms of formation (127,128). As discussed,
during development, the endocardium undergoes
EndMT to form the cardiac valves and septa (Figure 1).
This indirectly suggests that, if aberrantly activated,
the endocardium might also form the fibroelastic
tissue found in EFE. Supporting this hypothesis,
endothelial lineage tracking studies in EFE mice have
shown that a proportion of EFE cells are derived via
EndMT. Moreover, using immunofluorescence stain-
ing for endothelial and mesenchymal markers,
EndMT was identified in human EFE tissues (129).

Interestingly, hypermethylation of BMP7 (an
endogenous EndMT inhibitor) was found in human
EFE tissues, and exogenous recombinant BMP7 was
able to inhibit EndMT and EFE development in the
mouse model (129), suggesting that drugs targeting
epigenetic mechanisms (DNA methyltransferase in-
hibitors or DNA demethylase activators; see Epige-
netics section) might be efficacious for preventing
EFE.

VEIN GRAFT REMODELING. Veins are commonly
used conduits in arterial bypass graft surgery; how-
ever, 20% to 30% of vein grafts may fail within 12 to
18 months (130). Vein graft failure is largely due to
adverse vascular remodeling, and the modulation of
“early” activators of this process could be targeted to
block the entire downstream complications that lead
to graft failure (130). Cooley et al. (11) have shown that
EndMT is important in vein graft remodeling and
neointimal formation, which is the maladaptive
smooth muscle cell hyperplasia that arises after a vein
is exposed to arterial pressure. Specifically, with the
adaptation to arterial pressure, they observed that
w50% of neointimal cells were EndMT-derived (11).



FIGURE 8 EndMT in PAH

Key features of PAH and the role of EndMT. FPAH ¼ pulmonary arterial hypertension; other abbreviations as in Figure 1.
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EndMT-derived cells were found to be typical syn-
thetic SMCs, expressing a-SMA and SM22a. EndMT in
this setting was dependent on TGF-b signaling, with
early activation of Smad2/3-Snai2. Correspondingly,
antagonism of TGF-b signaling resulted in decreased
EndMT and less neointimal formation. Cooley et al.
(11) further identified that both Smad2 and Smad3
regulate Snai2, with Smad3 shown to directly bind the
Snai2 promoter. Histological examination of post-
mortem human vein grafts corroborated these find-
ings, suggesting that EndMT is operative during
human vein graft remodeling (11).
CARDIAC FIBROSIS. If there is a controversial aspect
of EndMT, it is its contribution to cardiac fibrosis. In
2007, the first major publication emerged about
EndMT in adult animals, suggesting that cardiac
fibrosis was associated with EndMT (45). Using a Tie1
Cre-lox endothelial lineage tracking system in a
model of cardiac overload and fibrosis, cells that once
expressed Tie1 (an endothelial marker) contributed to
27% to 33% of cardiac fibroblasts. The use of Smad3-
deficient mice or administration of BMP7 inhibited
EndMT and cardiac fibrosis in vivo (45). This study
catalyzed significant interest in the field and subse-
quently, using cellular costaining (65,88,92,131) and
Cre-lox systems (132), other investigators recapitu-
lated the finding that EndMT contributes to cardiac
fibrosis. For example, Murdoch et al. (131) used cos-
taining and changes in protein expression to conclude
that EndMT is involved in cardiac fibrosis and



TABLE 2 Additional Disease States Where EndMT Has Been Implicated

Disease Potential Role of EndMT (Ref. #)

Fibrodysplasia ossificans
progressiva

Murine lineage tracking and human cell characterization
experiments showed an endothelial origin of osteoblasts
and chondrocytes via EndMT

(145)

Kidney fibrosis and kidney
transplant failure

EndMT may participate in renal fibrosis (146)

Cardiac transplant
vasculopathy

Somewhat similar to atherosclerosis, EndMT may participate
in cardiac transplant vasculopathy

(63)

EndMT ¼ endothelial to mesenchymal transition.
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diastolic dysfunction, which was mediated by endo-
thelial nicotinamide adenine dinucleotide phosphate
oxidase-2 activation (131). However, other studies
have refuted these claims, suggesting that de novo
EndMT plays little role in cardiac fibrosis in the adult
(133,134). Adding complexity, a challenge faced by
these studies is the need to distinguish between car-
diac fibroblasts that are developmentally derived via
EndMT from the endocardial cushions (for which
there is consensus agreement [133,134]) versus de
novo cardiac EndMT from adult ECs (where the con-
troversy resides).

A potential explanation may lie in the fact that
during EndMT in the adult, cells with a fully mature
mesenchymal phenotype may be rarely achieved (8).
In other words, as already mentioned, EndMT in the
adult is likely associated with a partial transition to a
mesenchymal-like phenotype, but not fully mature
mesenchymal cells. This is consistent with recent
studies in the kidney, where de novo EMT gave rise to
partially transitioned fibroblast-like cells (4). Never-
theless, the fact the EndMT in the adult may be an
incomplete process likely cannot account for all of the
discrepancies in these studies, and further research is
required to fully define the contribution (or not) of de
novo EndMT to cardiac fibrosis in the adult.
TABLE 3 Major Near-Term Obstacles and Challenges That Remain to

Challenge/Obstacle Com

Lack of a robust functional and molecular
definition of EndMT

The lack of a functional and m
is fostering scientific conf
interpretation, limiting co
facilitating the publication
endpoints.

Lack of understanding of the contribution
of EndMT to disease causation
(vs. being a disease association or
epiphenomenon)

This problem is challenging to
context, but genetic mous
this task. However, these
resources and meticulous
must be relevant to EndM

Lack of robust human data on EndMT Although mouse studies are t
system for rigorous proof
demonstrating causality, fi
(ideally) in larger animals
Furthermore, some critica
interest in EndMT, such as
erosion, can only be tackl
true animal models.

Lack of translational proof of concept Few studies have attempted t
animals (122–124). Althou
proof-of-concept studies
require extensive resource
A critical consideration is
and whether regulatory au
animal studies before clin
Moreover, this may be dis
because EndMT appears r

CVD ¼ cardiovascular disease; EndMT ¼ endothelial to mesenchymal transition.
PULMONARY HYPERTENSION. Primary pulmonary
arterial hypertension (PAH) is a rare condition medi-
ated by distal pulmonary vasculature vasoconstric-
tion, aberrant vascular remodeling, vascular
occlusions, and the formation of characteristic plexi-
form lesions (Figure 8) (135). In addition, endothelial
dysfunction is a hallmark of PAH (135). Many cases of
PAH are caused by BMP type II receptor gene (BMPR2)
mutations, resulting in increased TGF-b signaling,
including both noncanonical and canonical Smad-
mediated signaling (135), although other rare vari-
ants are also implicated (136).

EndMT was first identified in PAH based on in situ
analyses of endothelial and mesenchymal markers, as
Be Overcome in the Investigation and Clinical Translation of EndMT

ments Solution

olecular definition of EndMT
usion, hampering research and
mparability of data, and
of studies with suboptimal

Research teams should work together to achieve a functional
and molecular definition in the near term. This will require
sharing of data, pooling and combined analyses of high-
throughput datasets (i.e., RNA sequencing, proteomics), and
consensus agreement on definitions. This will be an ongoing
process that will need refinement as further data and
knowledge emerge. Embedded within this task is the
understanding of additional molecular issues such as the
reversibility of EndMT, or whether it is a clonal phenomenon.

address in the human
e models are well-suited to
studies require significant
scientific approaches that
T in human pathology.

We propose extensive, well-designed, and meticulously
conducted genetic mouse studies, with validation and
reproducibility achieved among collaborating laboratories.

he most effective model
of concept and for
ndings must be validated
and (absolutely) in humans.
l questions that drive our
the role of EndMT in plaque

ed in humans as there are no

We propose detailed human studies using explanted and surplus
surgical tissues from relevant disease states, with the
application of cutting-edge techniques such as single-cell
RNA sequencing to explore the contribution and extent of
EndMT. Cross-validation among collaborating laboratories
of key findings will be essential.

o manipulate EndMT in larger
gh large animal translational
are clearly necessary, they
s and clear scientific objectives.
the existence of a suitable model,
thorities would require large
ical trials could commence.
ease-specific and context-specific,
elevant across a range of CVDs.

Consortia should be formed with a view to prioritizing EndMT
targets in disease states amenable to large animal models,
with a view to systematically studying the utility of
manipulating EndMT for therapeutic gain. It will be essential
to engage with regulatory authorities to assess need and
appropriate nature of such models in the functional disease
context.



Kovacic et al. J A C C V O L . 7 3 , N O . 2 , 2 0 1 9

EndMT in Cardiovascular Disease J A N U A R Y 2 2 , 2 0 1 9 : 1 9 0 – 2 0 9

206
well as an intervention study using rapamycin that
reversed protein markers that are characteristic of
EndMT (137). Further evidence demonstrated both
the presence of EndMT in PAH and also the induction
of EndMT by IL-1b, TGF-b, and TNFa. Notably,
EndMT-derived cells secreted high levels of cytokines
and supported a greater extent of immune cell
transmigration (138). An association of pathological
mechanisms came with the finding that EndMT in
PAH was related to high motility group AT-hook 1
(HMGA1), demonstrated through association of
HMGA1 protein expression with cells undergoing
EndMT. Interestingly, and as a link to EndMT, HMGA1
expression was associated with reduced BMPR2 levels
(139). Further mechanistic understanding has come
through an association of EndMT in PAH with Twist
expression and function (140). Moreover, a study of
HIF-2a in human and experimental models has
demonstrated a link with hypoxia, and mechanisti-
cally through induction of Snai1/2. Notably, endo-
thelial loss of the prolyl hydroxylase domain protein 2
gene (this protein promotes HIF-2a degradation) led
to severe PAH even in normoxia conditions (141). A
separate study showed that loss of HIF-1a inhibited
EndMT induction and normalized endothelial CD31
levels (142). Finally, a detailed characterization of
pulmonary ECs undergoing EndMT has highlighted
the contribution of the cells themselves, and also the
paracrine signaling that such cells induce in the lung
vasculature (143).

A growing list of other CVDs are also associated
with EndMT. Although in some cases the evidence is
perhaps not as robust as the studies and diseases
mentioned previously, these are summarized in
Table 2.

CONCLUSIONS AND FUTURE DIRECTIONS

EndMT is involved in numerous CVDs, which collec-
tively are a major cause of global morbidity and
mortality. Hence, the manipulation of EndMT for
therapeutic gain is a tantalizing prospect. Neverthe-
less, a number of obstacles remain to be overcome
before the full therapeutic potential of manipulating
EndMT can be realized, as described in Table 3. Un-
doubtedly, beyond these issues there are still further
unknown challenges to be met and unforeseen ob-
stacles to be resolved. However, with a collaborative
and focused effort, we believe that over the next
decade enormous advances can be made with respect
to our understanding and future manipulation of
EndMT as a potential clinical therapy.
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