614 research outputs found

    Ultrathin compound semiconductor on insulator layers for high performance nanoscale transistors

    Full text link
    Over the past several years, the inherent scaling limitations of electron devices have fueled the exploration of high carrier mobility semiconductors as a Si replacement to further enhance the device performance. In particular, compound semiconductors heterogeneously integrated on Si substrates have been actively studied, combining the high mobility of III-V semiconductors and the well-established, low cost processing of Si technology. This integration, however, presents significant challenges. Conventionally, heteroepitaxial growth of complex multilayers on Si has been explored. Besides complexity, high defect densities and junction leakage currents present limitations in the approach. Motivated by this challenge, here we utilize an epitaxial transfer method for the integration of ultrathin layers of single-crystalline InAs on Si/SiO2 substrates. As a parallel to silicon-on-insulator (SOI) technology14,we use the abbreviation "XOI" to represent our compound semiconductor-on-insulator platform. Through experiments and simulation, the electrical properties of InAs XOI transistors are explored, elucidating the critical role of quantum confinement in the transport properties of ultrathin XOI layers. Importantly, a high quality InAs/dielectric interface is obtained by the use of a novel thermally grown interfacial InAsOx layer (~1 nm thick). The fabricated FETs exhibit an impressive peak transconductance of ~1.6 mS/{\mu}m at VDS=0.5V with ON/OFF current ratio of greater than 10,000 and a subthreshold swing of 107-150 mV/decade for a channel length of ~0.5 {\mu}m

    2019 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations : summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces

    No full text
    The International Liaison Committee on Resuscitation has initiated a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation science. This is the third annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. It addresses the most recent published resuscitation evidence reviewed by International Liaison Committee on Resuscitation Task Force science experts. This summary addresses the role of cardiac arrest centers and dispatcher-assisted cardiopulmonary resuscitation, the role of extracorporeal cardiopulmonary resuscitation in adults and children, vasopressors in adults, advanced airway interventions in adults and children, targeted temperature management in children after cardiac arrest, initial oxygen concentration during resuscitation of newborns, and interventions for presyncope by first aid providers. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the certainty of the evidence on the basis of the Grading of Recommendations, Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence to Decision Framework Highlights sections. The task forces also listed priority knowledge gaps for further research

    Line orientation adaptation: local or global?

    Get PDF
    Prolonged exposure to an oriented line shifts the perceived orientation of a subsequently observed line in the opposite direction, a phenomenon known as the tilt aftereffect (TAE). Here we consider whether the TAE for line stimuli is mediated by a mechanism that integrates the local parts of the line into a single global entity prior to the site of adaptation, or the result of the sum of local TAEs acting separately on the parts of the line. To test between these two alternatives we used the fact the TAE transfers almost completely across luminance contrast polarity [1]. We measured the TAE using adaptor and test lines that (1) either alternated in luminance polarity or were of a single polarity, and (2) either alternated in local orientation or were of a single orientation. We reasoned that if the TAE was agnostic to luminance polarity and was parts-based, we should obtain large TAEs using alternating-polarity adaptors with single-polarity tests. However we found that (i) TAEs using one-alternating-polarity adaptors with all-white tests were relatively small, increased slightly for two-alternating-polarity adaptors, and were largest with all-white or all-black adaptors. (ii) however TAEs were relatively large when the test was one-alternating polarity, irrespective of the adaptor type. (iii) The results with orientation closely mirrored those obtained with polarity with the difference that the TAE transfer across orthogonal orientations was weak. Taken together, our results demonstrate that the TAE for lines is mediated by a global shape mechanism that integrates the parts of lines into whole prior to the site of orientation adaptation. The asymmetry in the magnitude of TAE depending on whether the alternating-polarity lines was the adaptor or test can be explained by an imbalance in the population of neurons sensitive to 1st-and 2nd-order lines, with the 2nd-order lines being encoded by a subset of the mechanisms sensitive to 1st-order lines

    Tetrahydrobiopterin modulates ubiquitin conjugation to UBC13/UBE2N and proteasome activity by S-nitrosation

    Get PDF
    Nitric Oxide (NO) is an intracellular signalling mediator, which affects many biological processes via the posttranslational modification of proteins through S-nitrosation. The availability of NO and NOS-derived reactive oxygen species (ROS) from enzymatic uncoupling are determined by the NO synthase cofactor Tetrahydrobiopterin (BH4). Here, using a global proteomics “biotin-switch” approach, we identified components of the ubiquitin-proteasome system to be altered via BH4-dependent NO signalling by protein S-nitrosation. We show S-nitrosation of ubiquitin conjugating E2 enzymes, in particular the catalytic residue C87 of UBC13/UBE2N, leading to impaired polyubiquitylation by interfering with the formation of UBC13~Ub thioester intermediates. In addition, proteasome cleavage activity in cells also seems to be altered by S-nitrosation, correlating with the modification of cysteine residues within the 19S regulatory particle and catalytic subunits of the 20S complex. Our results highlight the widespread impact of BH4 on downstream cellular signalling as evidenced by the effect of a perturbed BH4-dependent NO-Redox balance on critical processes within the ubiquitin-proteasome system (UPS). These studies thereby uncover a novel aspect of NO associated modulation of cellular homeostasis

    Obesity, antenatal depression, diet and gestational weight gain in a population cohort study

    Get PDF
    Purpose: The aims of this paper are to examine: (1) the relationship between high pre-pregnancy BMI and antenatal depression; (2) whether BMI and antenatal depression interact to predict diet and gestational weight gain (GWG). Methods: Data came from the Avon Longitudinal Study of Parents and Children (ALSPAC). Underweight women were excluded. Pre-pregnancy BMI was self-reported and antenatal depression was assessed using the Edinburgh Postnatal Depression Scale at 18 and 32 weeks’ gestation to identify persistently elevated depressive symptoms (EPDS>12). Dietary patterns were calculated from food frequency questionnaires at 32 weeks’ gestation. GWG was categorised using the USA Institute of Medicine guidelines. Results: This study included 13,314 pregnant women. Obese women had significantly higher odds of antenatal depression than normal weight controls after adjusting for sociodemographics and health behaviours (aOR 1.39, 95%CI 1.05–1.84). Every unit increase in pre-pregnancy BMI was associated with approximately 3% higher odds of antenatal depression (aOR 1.03, 95%CI 1.01-1.05). Antenatal depression was not meaningfully associated with dietary patterns after adjusting for confounders and was not associated with inadequate or excessive GWG. There was no evidence for an interaction of depression and BMI on either diet or GWG. Conclusions Healthcare professionals should be aware of the dose-response relationship between high pre-pregnancy BMI and antenatal depression

    Obesity and Weight Gain in Pregnancy and Postpartum: An Evidence Review of Lifestyle Interventions to Inform Maternal and Child Health Policies

    Get PDF
    Background: Maternal obesity, excessive gestational weight gain (GWG) and post-partum weight retention (PPWR) constitute new public health challenges, due to the association with negative short- and long-term maternal and neonatal outcomes. The aim of this evidence review was to identify effective lifestyle interventions to manage weight and improve maternal and infant outcomes during pregnancy and postpartum. Methods: A review of systematic reviews and meta-analyses investigating the effects of lifestyle interventions on GWG or PPWR was conducted (Jan 2009-2018) via electronic searches in the databases Medline, Pubmed, Web of Science and Cochrane Library using all keywords related to obesity/weight gain/loss, pregnancy or postpartum and lifestyle interventions;15 relevant reviews were selected. Results: In healthy women from all BMI classes, diet and physical activity interventions can decrease: GWG (mean difference -1.8 to -0.7 kg, high to moderate-quality evidence); the risks of GWG above the IOM guidelines (risk ratio [RR] 0.72 to 0.80, high to low-quality evidence); pregnancy-induced hypertension (RR 0.30 to 0.66, low to very low-quality evidence); cesarean section (RR 0.91 to 0.95; high to moderate-quality evidence) and neonatal respiratory distress syndrome (RR 0.56, high-quality evidence); without any maternal/fetal/neonatal adverse effects. In women with overweight/obesity, multi-component interventions can decrease: GWG (-0.91 to -0.63 kg, moderate to very low-quality evidence); pregnancy-induced hypertension (RR 0.30 to 0.66, low-quality evidence); macrosomia (RR 0.85, 0.73 to 1.0, moderate-quality evidence) and neonatal respiratory distress syndrome (RR 0.47, 0.26 to 0.85, moderate-quality evidence). Diet is associated with greater reduction of the risks of GDM, pregnancy-induced hypertension and preterm birth, compared with any other intervention. After delivery, combined diet and physical activity interventions reduce PPWR in women of any BMI (-2.57 to -2.3 kg, very low quality evidence) or with overweight/obesity (-3.6 to -1.22, moderate to very low-quality-evidence), but no other effects were reported. Conclusions: Multi-component approaches including a balanced diet with low glycaemic load and light to moderate intensity physical activity, 30-60 min per day 3-5 days per week, should be recommended from the first trimester of pregnancy and maintained during the postpartum period. This evidence review should help inform recommendations for health care professionals and women of child-bearing age

    A Neurophysiologically Plausible Population Code Model for Feature Integration Explains Visual Crowding

    Get PDF
    An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called “crowding”. Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, “compulsory averaging”, and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality
    • 

    corecore