138 research outputs found

    Structure and Function of a Mycobacterial NHEJ DNA Repair Polymerase

    Get PDF
    Non homologous end-joining (NHEJ)-mediated repair of DNA double-strand breaks in prokaryotes requires Ku and a specific multidomain DNA ligase (LigD). We present crystal structures of the primase/polymerisation domain (PolDom) of Mycobacterium tuberculosis LigD, alone and complexed with nucleotides. The PolDom structure combines the general fold of the archaeo-eukaryotic primase (AEP) superfamily with additional loops and domains that together form a deep cleft on the surface, likely used for DNA binding. Enzymatic analysis indicates that the PolDom of LigD, even in the absence of accessory domains and Ku proteins, has the potential to recognise DNA end-joining intermediates. Strikingly, one of the main signals for the specific and efficient binding of PolDom to DNA is the presence of a 5'-phosphate group, located at the single/double-stranded junction at both gapped and 3'-protruding DNA molecules. Although structurally unrelated, Pol lambda and Pol mu, the two eukaryotic DNA polymerases involved in NHEJ, are endowed with a similar capacity to bind a 5'-phosphate group. Other properties that are beneficial for NHEJ, such as the ability to generate template distortions and realignments of the primer, displayed by Pol lambda and Pol mu, are shared by the PolDom of bacterial LigD. In addition, PolDom can perform non-mutagenic translesion synthesis on termini containing modified bases. Significantly, ribonucleotide insertion appears to be a recurrent theme associated with NHEJ, maximised in this case by the deployment of a dedicated primase, although its in vivo relevance is unknown

    Crystal structure of human XLF/Cernunnos reveals unexpected differences from XRCC4 with implications for NHEJ

    Get PDF
    The recently characterised 299-residue human XLF/Cernunnos protein plays a crucial role in DNA repair by non-homologous end joining (NHEJ) and interacts with the XRCC4–DNA Ligase IV complex. Here, we report the crystal structure of the XLF (1–233) homodimer at 2.3 Γ… resolution, confirming the predicted structural similarity to XRCC4. The XLF coiled-coil, however, is shorter than that of XRCC4 and undergoes an unexpected reverse in direction giving rise to a short distorted four helical bundle and a C-terminal helical structure wedged between the coiled-coil and head domain. The existence of a dimer as the major species is confirmed by size-exclusion chromatography, analytical ultracentrifugation, small-angle X-ray scattering and other biophysical methods. We show that the XLF structure is not easily compatible with a proposed XRCC4:XLF heterodimer. However, we demonstrate interactions between dimers of XLF and XRCC4 by surface plasmon resonance and analyse these in terms of surface properties, amino-acid conservation and mutations in immunodeficient patients. Our data are most consistent with head-to-head interactions in a 2:2:1 XRCC4:XLF:Ligase IV complex

    Loss of DNA ligase IV prevents recognition of DNA by double-strand break repair proteins XRCC4 and XLF

    Get PDF
    The repair of DNA double-strand breaks by nonhomologous end-joining (NHEJ) is essential for maintenance of genomic integrity and cell viability. Central to the molecular mechanism of NHEJ is DNA ligase IV/XRCC4/XLF complex, which rejoins the DNA. During adenovirus (Ad5) infection, ligase IV is targeted for degradation in a process that requires expression of the viral E1B 55k and E4 34k proteins while XRCC4 and XLF protein levels remain unchanged. We show that in Ad5-infected cells, loss of ligase IV is accompanied by loss of DNA binding by XRCC4. Expression of E1B 55k and E4 34k was sufficient to cause loss of ligase IV and loss of XRCC4 DNA binding. Using ligase IV mutant human cell lines, we determined that the absence of ligase IV, and not expression of viral proteins, coincided with inhibition of DNA binding by XRCC4. In ligase IV mutant human cell lines, DNA binding by XLF was also inhibited. Expression of both wild-type and adenylation-mutant ligase IV in ligase IV-deficient cells restored DNA binding by XRCC4. These data suggest that the intrinsic DNA-binding activities of XRCC4 and XLF may be subject to regulation and are down regulated in human cells that lack ligase IV

    Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats.

    Get PDF
    Broken chromosomes arising from DNA double-strand breaks result from endogenous events such as the production of reactive oxygen species during cellular metabolism, as well as from exogenous sources such as ionizing radiation. Left unrepaired or incorrectly repaired they can lead to genomic changes that may result in cell death or cancer. DNA-dependent protein kinase (DNA-PK), a holoenzyme that comprises the DNA-PK catalytic subunit (DNA-PKcs) and the heterodimer Ku70/Ku80, has a major role in non-homologous end joining-the main pathway in mammals used to repair double-strand breaks. DNA-PKcs is a serine/threonine protein kinase comprising a single polypeptide chain of 4,128 amino acids and belonging to the phosphatidylinositol-3-OH kinase (PI(3)K)-related protein family. DNA-PKcs is involved in the sensing and transmission of DNA damage signals to proteins such as p53, setting off events that lead to cell cycle arrest. It phosphorylates a wide range of substrates in vitro, including Ku70/Ku80, which is translocated along DNA. Here we present the crystal structure of human DNA-PKcs at 6.6 A resolution, in which the overall fold is clearly visible, to our knowledge, for the first time. The many alpha-helical HEAT repeats (helix-turn-helix motifs) facilitate bending and allow the polypeptide chain to fold into a hollow circular structure. The carboxy-terminal kinase domain is located on top of this structure, and a small HEAT repeat domain that probably binds DNA is inside. The structure provides a flexible cradle to promote DNA double-strand-break repair

    Reprint of β€œThe clinical impact of deficiency in DNA non-homologousend-joining”

    Get PDF
    DNA non-homologous end-joining (NHEJ) is the major DNA double strand break (DSB) repair pathway inmammalian cells. Defects in NHEJ proteins confer marked radiosensitivity in cell lines and mice models,since radiation potently induces DSBs. The process of V(D)J recombination functions during the devel-opment of the immune response, and involves the introduction and rejoining of programmed DSBs togenerate an array of diverse T and B cells. NHEJ rejoins these programmed DSBs. Consequently, NHEJdeficiency confers (severe) combined immunodeficiency – (S)CID – due to a failure to carry out V(D)Jrecombination efficiently. NHEJ also functions in class switch recombination, another step enhancing Tand B cell diversity. Prompted by these findings, a search for radiosensitivity amongst (S)CID patientsrevealed a radiosensitive sub-class, defined as RS-SCID. Mutations in NHEJ genes, defining human syn-dromes deficient in DNA ligase IV (LIG4 Syndrome), XLF-Cernunnos, Artemis or DNA-PKcs, have beenidentified in such patients. Mutations in XRCC4 or Ku70,80 in patients have not been identified. RS-SCIDpatients frequently display additional characteristics including microcephaly, dysmorphic facial featuresand growth delay. Here, we overview the clinical spectrum of RS-SCID patients and discuss our currentunderstanding of the underlying biology

    Gas generation and wind power: A review of unlikely allies in the United Kingdom and Ireland

    Get PDF
    No single solution currently exists to achieve the utopian desire of zero fossil fuel electricity generation. Until such time, it is evident that the energy mix will contain a large variation in stochastic and intermittent sources of renewable energy such as wind power. The increasing prominence of wind power in pursuit of legally binding European energy targets enables policy makers and conventional generating companies to plan for the unique challenges such a natural resource presents. This drive for wind has been highly beneficial in terms of security of energy supply and reducing greenhouse gas emissions. However, it has created an unusual ally in natural gas. This paper outlines the suitability and challenges faced by gas generating units in their utilisation as key assets for renewable energy integration and the transition to a low carbon future. The Single Electricity Market of the Republic of Ireland and Northern Ireland and the British Electricity Transmission Trading Agreement Market are the backdrop to this analysis. Both of these energy markets have a reliance on gas generation matching the proliferation of wind power. The unlikely and mostly ignored relationship between natural gas generation and wind power due to policy decisions and market forces is the necessity of gas to act as a bridging fuel. This review finds gas generation to be crucially important to the continued growth of renewable energy. Additionally, it is suggested that power market design should adequately reward the flexibility required to securely operate a power system with high penetrations of renewable energy, which in most cases is provided by gas generation

    Characteristics and outcomes of hospitalised adults with COVID-19 in a Global Health Research Network: A cohort study

    Get PDF
    Objective To examine age, gender, and temporal differences in baseline characteristics and clinical outcomes of adult patients hospitalised with COVID-19. Design A cohort study using deidentified electronic medical records from a Global Research Network. Setting/Participants 67 456 adult patients hospitalised with COVID-19 from the USA; 7306 from Europe, Latin America and Asia-Pacific between February 2020 and January 2021. Results In the US cohort, compared with patients 18-34 years old, patients β‰₯65 had a greater risk of intensive care unit (ICU) admission (adjusted HR (aHR) 1.73, 95% CI 1.58 to 1.90), acute respiratory distress syndrome(ARDS)/respiratory failure (aHR 1.86, 95% CI 1.76 to 1.96), invasive mechanical ventilation (IMV, aHR 1.93, 95% CI, 1.73 to 2.15), and all-cause mortality (aHR 5.6, 95% CI 4.36 to 7.18). Men appeared to be at a greater risk for ICU admission (aHR 1.34, 95% CI 1.29 to 1.39), ARDS/respiratory failure (aHR 1.24, 95% CI1.21 to 1.27), IMV (aHR 1.38, 95% CI 1.32 to 1.45), and all-cause mortality (aHR 1.16, 95% CI 1.08 to 1.24) compared with women. Moreover, we observed a greater risk of adverse outcomes during the early pandemic (ie, February-April 2020) compared with later periods. In the ex-US cohort, the age and gender trends were similar; for the temporal trend, the highest proportion of patients with all-cause mortality were also in February-April 2020; however, the highest percentages of patients with IMV and ARDS/respiratory failure were in August-October 2020 followed by February-April 2020. Conclusions This study provided valuable information on the temporal trends of characteristics and outcomes of hospitalised adult COVID-19 patients in both USA and ex-USA. It also described the population at a potentially greater risk for worse clinical outcomes by identifying the age and gender differences. Together, the information could inform the prevention and treatment strategies of COVID-19. Furthermore, it can be used to raise public awareness of COVID-19's impact on vulnerable populations

    Evidence for Limited Genetic Compartmentalization of HIV-1 between Lung and Blood

    Get PDF
    BACKGROUND:HIV-1 is frequently detected in the lungs of infected individuals and is likely important in the development of pulmonary opportunistic infections. The unique environment of the lung, rich in alveolar macrophages and with specialized local immune responses, may contribute to differential evolution or selection of HIV-1. METHODOLOGY AND FINDINGS:We characterized HIV-1 in the lung in relation to contemporaneous viral populations in the blood. The C2-V5 region of HIV-1 env was sequenced from paired lung (induced sputum or bronchoalveolar lavage) and blood (plasma RNA and proviral DNA from sorted or unsorted PBMC) from 18 subjects. Compartmentalization between tissue pairs was assessed using 5 established tree or distance-based methods, including permutation tests to determine statistical significance. We found statistical evidence of compartmentalization between lung and blood in 10/18 subjects, although lung and blood sequences were intermingled on phylogenetic trees in all subjects. The subject showing the greatest compartmentalization contained many nearly identical sequences in BAL sample, suggesting clonal expansion may contribute to reduced viral diversity in the lung in some cases. However, HIV-1 sequences in lung were not more homogeneous overall, nor were we able to find a lung-specific genotype associated with macrophage tropism in V3. In all four subjects in whom predicted X4 genotypes were found in blood, predicted X4 genotypes were also found in lung. CONCLUSIONS:Our results support a picture of continuous migration of HIV-1 between circulating blood and lung tissue, with perhaps a very limited degree of localized evolution or clonal replication

    HIV-1 Populations in Semen Arise through Multiple Mechanisms

    Get PDF
    HIV-1 is present in anatomical compartments and bodily fluids. Most transmissions occur through sexual acts, making virus in semen the proximal source in male donors. We find three distinct relationships in comparing viral RNA populations between blood and semen in men with chronic HIV-1 infection, and we propose that the viral populations in semen arise by multiple mechanisms including: direct import of virus, oligoclonal amplification within the seminal tract, or compartmentalization. In addition, we find significant enrichment of six out of nineteen cytokines and chemokines in semen of both HIV-infected and uninfected men, and another seven further enriched in infected individuals. The enrichment of cytokines involved in innate immunity in the seminal tract, complemented with chemokines in infected men, creates an environment conducive to T cell activation and viral replication. These studies define different relationships between virus in blood and semen that can significantly alter the composition of the viral population at the source that is most proximal to the transmitted virus
    • …
    corecore