441 research outputs found

    A VLBA survey of the core shift effect in AGN jets I. Evidence for dominating synchrotron opacity

    Full text link
    The effect of a frequency dependent shift of the VLBI core position (known as the "core shift") was predicted more than three decades ago and has since been observed in a few sources, but often within a narrow frequency range. This effect has important astrophysical and astrometric applications. To achieve a broader understanding of the core shift effect and the physics behind it, we conducted a dedicated survey with NRAO's Very Long Baseline Array (VLBA). We used the VLBA to image 20 pre-selected sources simultaneously at nine frequencies in the 1.4-15.4 GHz range. The core position at each frequency was measured by referencing it to a bright, optically thin feature in the jet. A significant core shift has been successfully measured in each of the twenty sources observed. The median value of the core shift is found to be 1.21 mas if measured between 1.4 and 15.4 GHz, and 0.24 mas between 5.0 and 15.4 GHz. The core position, r, as a function of frequency, n, is found to be consistent with an r n^-1 law. This behavior is predicted by the Blandford & Koenigl model of a purely synchrotron self-absorbed conical jet in equipartition. No systematic deviation from unity of the power law index in the r(n) relation has been convincingly detected. We conclude that neither free-free absorption nor gradients in pressure and/or density in the jet itself and in the ambient medium surrounding the jet play a significant role in the sources observed within the 1.4-15.4 GHz frequency range. These results support the interpretation of the parsec-scale core as a continuous Blandford-Koenigl type jet with smooth gradients of physical properties along it.Comment: 31 pages, 6 figures, 5 tables; accepted to Astronomy & Astrophysic

    Identifying changing jets through their radio variability

    Get PDF
    Context. Supermassive black holes can launch highly relativistic jets with velocities reaching Lorentz factors of as high as Gamma > 50. How the jets accelerate to such high velocities and where along the jet they reach terminal velocity are open questions that are tightly linked to their structure as well as their launching and dissipation mechanisms.Aims. Changes in the beaming factor along the jets could potentially reveal jet acceleration, deceleration, or bending. We aim to (1) quantify the relativistic effects in multiple radio frequencies and (2) study possible jet velocity-viewing angle variations at parsec scales.Methods. We used the state-of-the-art code Magnetron to model light curves from the University of Michigan Radio Observatory and the Metsahovi Radio Observatory's monitoring programs in five frequencies covering about 25 years of observations in the 4.8 to 37 GHz range for 61 sources. We supplement our data set with high-frequency radio observations in the 100-340 GHz range from ALMA, CARMA, and SMA. For each frequency we estimate the Doppler factor which we use to quantify possible changes in the relativistic effects along the jets.Results. The majority of our sources do not show any statistically significant difference in their Doppler factor across frequencies. This is consistent with constant velocity in a conical jet structure, as expected at parsec scales. However, our analysis reveals 17 sources where relativistic beaming changes as a function of frequency. In the majority of cases, the Doppler factor increases towards lower frequencies. Only 1253-053 shows the opposite behavior. By exploring their jet properties we find that the jet of 0420-014 is likely bent across the 4.8-340 GHz range. For 0212+735, the jet is likely parabolic, and still accelerating in the 4.8-37 GHz range. We discuss possible interpretations for the trends found in the remaining sources

    Hepatic encephalopathy-associated cerebral vasculopathy in acute-on-chronic liver failure: Alterations on endothelial factor release and influence on cerebrovascular function

    Full text link
    The acute-on-chronic liver failure (ACLF) is a syndrome characterized by liver decompensation, hepatic encephalopathy (HE) and high mortality. We aimed to determine the mechanisms implicated in the development of HE-associated cerebral vasculopathy in a microsurgical liver cholestasis (MHC) model of ACLF. Microsurgical liver cholestasis was induced by ligating and extracting the common bile duct and four bile ducts. Sham-operated and MHC rats were maintained for eight postoperative weeks Bradykinin-induced vasodilation was greater in middle cerebral arteries from MHC rats. Both Nω-Nitro-L-arginine methyl ester and indomethacin diminished bradykinin-induced vasodilation largely in arteries from MHC rats. Nitrite and prostaglandin (PG) F releases were increased, whereas thromboxane (TX) B was not modified in arteries from MHC. Expressions of endothelial nitric oxide synthase (eNOS), inducible NOS, and cyclooxygenase (COX) 2 were augmented, and neuronal NOS (nNOS), COX-1, PGI synthase, and TXA S were unmodified. Phosphorylation was augmented for eNOS and unmodified for nNOS. Altogether, these endothelial alterations might collaborate to increase brain blood flow in HE. 1α 2 2 2This research was funded by the Ministerio de Economía y Competitividad (SAF2016-80305-P), CiberCV (Grant number: CB16/11/00286), the European Regional Development Grant (FEDER) (Comunidad de Madrid, grant number B2017/BMD- 3676), and R C D projects for young researchers, Universidad Autónoma de Madrid-Comunidad de Madrid (SI1-PJI-2019- 00321). RR-D received a fellowship from Juan de la Cierva Program (IJCI-2017-31399)

    A detailed clinical and molecular survey of subjects with nonsyndromic USH2A retinopathy reveals an allelic hierarchy of disease-causing variants.

    Get PDF
    Defects in USH2A cause both isolated retinal disease and Usher syndrome (ie, retinal disease and deafness). To gain insights into isolated/nonsyndromic USH2A retinopathy, we screened USH2A in 186 probands with recessive retinal disease and no hearing complaint in childhood (discovery cohort) and in 84 probands with recessive retinal disease (replication cohort). Detailed phenotyping, including retinal imaging and audiological assessment, was performed in individuals with two likely disease-causing USH2A variants. Further genetic testing, including screening for a deep-intronic disease-causing variant and large deletions/duplications, was performed in those with one likely disease-causing change. Overall, 23 of 186 probands (discovery cohort) were found to harbour two likely disease-causing variants in USH2A. Some of these variants were predominantly associated with nonsyndromic retinal degeneration ('retinal disease-specific'); these included the common c.2276 G>T, p.(Cys759Phe) mutation and five additional variants: c.2802 T>G, p.(Cys934Trp); c.10073 G>A, p.(Cys3358Tyr); c.11156 G>A, p.(Arg3719His); c.12295-3 T>A; and c.12575 G>A, p.(Arg4192His). An allelic hierarchy was observed in the discovery cohort and confirmed in the replication cohort. In nonsyndromic USH2A disease, retinopathy was consistent with retinitis pigmentosa and the audiological phenotype was variable. USH2A retinopathy is a common cause of nonsyndromic recessive retinal degeneration and has a different mutational spectrum to that observed in Usher syndrome. The following model is proposed: the presence of at least one 'retinal disease-specific' USH2A allele in a patient with USH2A-related disease results in the preservation of normal hearing. Careful genotype-phenotype studies such as this will become increasingly important, especially now that high-throughput sequencing is widely used in the clinical setting.European Journal of Human Genetics advance online publication, 4 February 2015; doi:10.1038/ejhg.2014.283

    A cost-effective method to quantify biological surface sediment reworking

    Get PDF
    We propose a simple and inexpensive method to determine the rate and pattern of surface sediment reworking by benthic organisms. Unlike many existing methods commonly used in bioturbation studies, which usually require sediment sampling, our approach is fully non-destructive and is well suited for investigating non-cohesive fine sediments in streams and rivers. Optical tracer (e.g., luminophores or coloured sand) disappearance or appearance is assessed through time based on optical quantification of surfaces occupied by tracers. Data are used to calculate surface sediment reworking (SSR) coefficients depicting bioturbation intensities. Using this method, we evaluated reworking activity of stream organisms (three benthic invertebrates and a fish) in laboratory microcosms mimicking pool habitats or directly in the field within arenas set in depositional zones. Our method was sensitive enough to measure SSR as low as 0.2 cm2.d-1, such as triggered by intermediate density (774 m-2) of Gammarus fossarum (Amphipoda) in microcosms. In contrast, complex invertebrate community in the field and a fish (Barbatula barabatula) in laboratory microcosms were found to yield to excessively high SSR (>60 cm2.d-1). Lastly, we suggest that images acquired during experiments can be used for qualitative evaluation of species-specific effects on sediment distribution

    Eta Carinae -- Physics of the Inner Ejecta

    Full text link
    Eta Carinae's inner ejecta are dominated observationally by the bright Weigelt blobs and their famously rich spectra of nebular emission and absorption lines. They are dense (n_e ~ 10^7 to 10^8 cm^-3), warm (T_e ~ 6000 to 7000 K) and slow moving (~40 km/s) condensations of mostly neutral (H^0) gas. Located within 1000 AU of the central star, they contain heavily CNO-processed material that was ejected from the star about a century ago. Outside the blobs, the inner ejecta include absorption-line clouds with similar conditions, plus emission-line gas that has generally lower densities and a wider range of speeds (reaching a few hundred km/s) compared to the blobs. The blobs appear to contain a negligible amount of dust and have a nearly dust-free view of the central source, but our view across the inner ejecta is severely affected by uncertain amounts of dust having a patchy distribution in the foreground. Emission lines from the inner ejecta are powered by photoionization and fluorescent processes. The variable nature of this emission, occurring in a 5.54 yr event cycle, requires specific changes to the incident flux that hold important clues to the nature of the central object.Comment: This is Chapter 5 in a book entitled: Eta Carinae and the Supernova Impostors, Kris Davidson and Roberta M. Humphreys, editors Springe

    The properties of discs around planets and brown dwarfs as evidence for disc fragmentation

    Get PDF
    Direct imaging searches have revealed many very low mass objects, including a small number of planetary-mass objects, as wide-orbit companions to young stars. The formation mechanism of these objects remains uncertain. In this paper, we present the predictions of the disc fragmentation model regarding the properties of the discs around such low-mass objects. We find that the discs around objects that have formed by fragmentation in discs hosted by Sun-like stars (referred to as parent discs and parent stars) are more massive than expected from the M disc-M∗relation (which is derived for stars with masses M∗>0.2M). Accordingly, the accretion rates on to these objects are also higher than expected from thė M∗−M∗relation. Moreover, there is no significant correlation between the mass of the brown dwarf or planet with the mass of its disc nor with the accretion rate from the disc on to it. The discs around objects that form by disc fragmentation have larger than expected masses as they accrete gas from the disc of their parent star during the first few kyr after they form. The amount of gas that they accrete and therefore their mass depend on how they move in their parent disc and how they interact with it. Observations of disc masses and accretion rates on to very low mass objectsareconsistentwiththepredictionsofthediscfragmentationmodel.Futureobservations (e.g. by Atacama Large Millimeter/submillimeter Array) of disc masses and accretion rates on to substellar objects that have even lower masses (young planets and young, low-mass brown dwarfs), where the scaling relations predicted by the disc fragmentation model diverge significantly from the corresponding relations established for higher mass stars, will test the predictions of this model

    Formation of Supermassive Black Holes

    Full text link
    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final publication is available at http://www.springerlink.co

    Validation of control genes and a standardised protocol for quantifying gene expression in the livers of C57BL/6 and ApoE−/− mice

    Get PDF
    The liver plays a critical role in food and drug metabolism and detoxification and accordingly influences systemic body homeostasis in health and disease. While the C57BL/6 and ApoE−/− mouse models are widely used to study gene expression changes in liver disease and metabolism, currently there are no validated stably expressed endogenous genes in these models, neither is it known how gene expression varies within and across liver lobes. Here we show regional variations in the expression of Ywhaz, Gak, Gapdh, Hmbs and Act-β endogenous genes across a liver lobe; Using homogeneous samples from the four liver lobes of 6 C57BL/6 mice we tested the stability of 12 endogenous genes and show that Act-β and Eif2-α are the most stably expressed endogenous genes in all four lobes and demonstrate lobular differences in the expression of Abca1 cholesterol efflux gene. These results suggest that sampling from a specified homogeneous powdered liver lobe is paramount in enhancing data reliability and reproducibility. The stability of the 12 endogenous genes was further tested using homogeneous samples of left liver lobes from 20 ApoE−/− mice on standard or high polyphenol diets. Act-β and Ywhaz are suitable endogenous genes for gene expression normalisation in this mouse model

    Tolerance for 8-oxoguanine but not thymine glycol in alignment-based gap filling of partially complementary double-strand break ends by DNA polymerase λ in human nuclear extracts

    Get PDF
    Ionizing radiation induces various clustered DNA lesions, including double-strand breaks (DSBs) accompanied by nearby oxidative base damage. Previous work showed that, in HeLa nuclear extracts, DSBs with partially complementary 3′ overhangs and a one-base gap in each strand are accurately rejoined, with the gaps being filled by DNA polymerase λ. To determine the possible effect of oxidative base damage on this process, plasmid substrates were constructed containing overhangs with 8-oxoguanine or thymine glycol in base-pairing positions of 3-base (-ACG or -GTA) 3′ overhangs. In this context, 8-oxoguanine was well tolerated by the end-joining machinery when present at one end of the break, but not when present at both ends. Thymine glycol was less well tolerated than 8-oxoguanine, reducing gap filling and accurate rejoining by at least 10-fold. The results suggest that complex DSBs can be accurately rejoined despite the presence of accompanying base damage, but that nonplanar bases constitute a major barrier to this process and promote error-prone joining. A chimeric DNA polymerase, in which the catalytic domain of polymerase λ was replaced with that of polymerase β, could not substitute for polymerase λ in these assays, suggesting that this domain is specifically adapted for gap filling on aligned DSB ends
    corecore