142 research outputs found

    Presupernova Structure of Massive Stars

    Full text link
    Issues concerning the structure and evolution of core collapse progenitor stars are discussed with an emphasis on interior evolution. We describe a program designed to investigate the transport and mixing processes associated with stellar turbulence, arguably the greatest source of uncertainty in progenitor structure, besides mass loss, at the time of core collapse. An effort to use precision observations of stellar parameters to constrain theoretical modeling is also described.Comment: Proceedings for invited talk at High Energy Density Laboratory Astrophysics conference, Caltech, March 2010. Special issue of Astrophysics and Space Science, submitted for peer review: 7 pages, 3 figure

    Prospects for asteroseismology

    Full text link
    The observational basis for asteroseismology is being dramatically strengthened, through more than two years of data from the CoRoT satellite, the flood of data coming from the Kepler mission and, in the slightly longer term, from dedicated ground-based facilities. Our ability to utilize these data depends on further development of techniques for basic data analysis, as well as on an improved understanding of the relation between the observed frequencies and the underlying properties of the stars. Also, stellar modelling must be further developed, to match the increasing diagnostic potential of the data. Here we discuss some aspects of data interpretation and modelling, focussing on the important case of stars with solar-like oscillations.Comment: Proc. HELAS Workshop on 'Synergies between solar and stellar modelling', eds M. Marconi, D. Cardini & M. P. Di Mauro, Astrophys. Space Sci., in the press Revision: correcting abscissa labels on Figs 1 and

    The GAPS Programme at TNG: XXXV. Fundamental properties of transiting exoplanet host stars

    Get PDF
    Context. Exoplanetary properties strongly depend on stellar properties: to know the planet with accuracy and precision it is necessary to know the star as accurately and precisely as possible. Aims. Our immediate aim is to characterize in a homogeneous and accurate way a sample of 27 transiting planet-hosting stars observed within the Global Architecture of Planetary System program. For the wide visual binary XO-2, we considered both components (N: hosting a transiting planet; S: without a known transiting planet). Our final goal is to widely analyze the sample by deriving several stellar properties, abundances of many elements, kinematic parameters, and discuss them in the context of planetary formation. Methods. We determined the stellar parameters (effective temperature, surface gravity, rotational velocity) and abundances of 26 elements (Li, C, N, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Fe, Mn, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Nd, Eu). Our study is based on high-resolution HARPS-N at TNG and FEROS at ESO spectra and uniform techniques. Depending on stellar parameters and chemical elements, we used line equivalent widths or spectral synthesis methods. We derived kinematic properties taking advantage of Gaia data and for the first time in exoplanet host stars we estimated ages using elemental ratios as chemical clocks. Results. The effective temperature of our stars is ∼4400-6700 K, while the iron abundance [Fe/H] is within -0.3 and 0.4 dex. Lithium is present in seven stars. The [X/H] and [X/Fe] abundances versus [Fe/H] are consistent with the Galactic chemical evolution. The dependence of [X/Fe] with the condensation temperature is critically analyzed with respect to stellar and kinematic properties. All targets with measured C and O abundances show C/O < 0.8, compatible with Si present in rock-forming minerals. Mean C/O and [C/O] values are slightly lower than for the Sun. Most of targets show 1.0 < Mg/Si < 1.5, compatible with Mg distributed between olivine and pyroxene, and mean Mg/Si lower than for the Sun. HAT-P-26, the target hosting the lowest-mass planet, shows the highest Mg/Si ratio. From our chemodynamical analysis we find agreement between ages and position within the Galactic disk. Finally, we note a tendency for higher-density planets to be around metal-rich stars and hints of higher stellar abundances of some volatiles (e.g., O) for lower-mass planets. We cannot exclude that part of our results could be also related to the location of the stars within the Galactic disk. Conclusions. We try to trace the planetary migration scenario from the composition of the planets related to the chemical composition of the hosting stars. This kind of study will be useful for upcoming space mission data to get more insights into the formation-migration mechanisms

    Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474

    Get PDF
    A recent phase 1 trial of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10-2474 led to the death of one volunteer and produced mild-to-severe neurological symptoms in four others. Although the cause of the clinical neurotoxicity is unknown, it has been postulated, given the clinical safety profile of other tested FAAH inhibitors, that off-target activities of BIA 10-2474 may have played a role. Here we use activity-based proteomicmethods to determine the protein interaction landscape of BIA 10-2474 in human cells and tissues. This analysis revealed that the drug inhibits several lipases that are not targeted by PF04457845, a highly selective and clinically tested FAAH inhibitor. BIA 10-2474, but not PF04457845, produced substantial alterations in lipid networks in human cortical neurons, suggesting that promiscuous lipase inhibitors have the potential to cause metabolic dysregulation in the nervous system

    Reconstruction of events recorded with the surface detector of the Pierre Auger Observatory

    Get PDF
    Cosmic rays arriving at Earth collide with the upper parts of the atmosphere, thereby inducing extensive air showers. When secondary particles from the cascade arrive at the ground, they are measured by surface detector arrays. We describe the methods applied to the measurements of the surface detector of the Pierre Auger Observatory to reconstruct events with zenith angles less than 60o using the timing and signal information recorded using the water-Cherenkov detector stations. In addition, we assess the accuracy of these methods in reconstructing the arrival directions of the primary cosmic ray particles and the sizes of the induced showers

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    First measurement of Ωc0 production in pp collisions at s=13 TeV

    Get PDF
    The inclusive production of the charm–strange baryon 0 c is measured for the first time via its hadronic √ decay into −π+ at midrapidity (|y| &lt;0.5) in proton–proton (pp) collisions at the centre-of-mass energy s =13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 &lt; pT &lt; 12 GeV/c. The pT dependence of the 0 c-baryon production relative to the prompt D0-meson and to the prompt 0 c-baryon production is compared to various models that take different hadronisation mechanisms into consideration. In the measured pT interval, the ratio of the pT-integrated cross sections of 0 c and prompt + c baryons multiplied by the −π+ branching ratio is found to be larger by a factor of about 20 with a significance of about 4σ when compared to e+e− collisions
    corecore