52 research outputs found

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Computer simulation of recrystallization in non-uniformly deformed metals

    Full text link
    The classical Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation [F = 1 - exp(- kt)n] for nucleation and growth transformations works very well for most solid state transformations but fails regularly when applied to recrystallization of plastically deformed metals. Under conditions of near constant growth rate, a high exponent (n [ges] 3) is predicted but low exponents (n [les] 2) are typically measured. Another common observation is that the slope of a JMAK plot, from which the exponent is inferred, decreases as recrystallization proceeds. Analysis of the published data suggested the hypothesis that the failure of the JMAK theory as applied to recrystallization is because of the lack of uniformity of the stored energy of plastic deformation on the grain size scale. This hypothesis was tested by use of Monte Carlo simulations of the type previously used successfully to model grain growth and recrystallization. The earlier simulations of recrystallization used uniform stored energies whereas the simulations presented here varied the stored energy from grain to grain. The kinetics were plotted on JMAK plots which exhibited low and varying exponents closely resembling experimental data. Specific simulations were performed to test the basic JMAK assumption that makes a correction for the effect of impingement under conditions of random nucleation, namely dF/dFe = (1 - F), where F is the actual volume fraction and Fe is the extended volume fraction--that which would obtain in the absence of impingement and overlap between new grains. It was found the assumption is accurate under conditions of uniform stored energy. With non-uniform stored energy, however, the correction underestimated the effect of impingement by a factor that rapidly increased (to over two orders of magnitude) during recrystallization.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28082/1/0000528.pd

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Phase Behavior of Aqueous Na-K-Mg-Ca-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    Get PDF
    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems

    INELASTIC SCATTERING OF 40-MeV POLARIZED PROTONS.

    No full text

    NEUTRON CROSS-SECTION MEASUREMENTS. Summary Report, March 1, 1968-- February 28, 1969.

    No full text

    Applying JIAC V to Real World Problems: The MAMS Case

    No full text
    corecore