123 research outputs found

    Thermodynamics of non-local materials: extra fluxes and internal powers

    Full text link
    The most usual formulation of the Laws of Thermodynamics turns out to be suitable for local or simple materials, while for non-local systems there are two different ways: either modify this usual formulation by introducing suitable extra fluxes or express the Laws of Thermodynamics in terms of internal powers directly, as we propose in this paper. The first choice is subject to the criticism that the vector fluxes must be introduced a posteriori in order to obtain the compatibility with the Laws of Thermodynamics. On the contrary, the formulation in terms of internal powers is more general, because it is a priori defined on the basis of the constitutive equations. Besides it allows to highlight, without ambiguity, the contribution of the internal powers in the variation of the thermodynamic potentials. Finally, in this paper, we consider some examples of non-local materials and derive the proper expressions of their internal powers from the power balance laws.Comment: 16 pages, in press on Continuum Mechanics and Thermodynamic

    Today's View on Strangeness

    Full text link
    There are several different experimental indications, such as the pion-nucleon sigma term and polarized deep-inelastic scattering, which suggest that the nucleon wave function contains a hidden s bar s component. This is expected in chiral soliton models, which also predicted the existence of new exotic baryons that may recently have been observed. Another hint of hidden strangeness in the nucleon is provided by copious phi production in various N bar N annihilation channels, which may be due to evasions of the Okubo-Zweig-Iizuka rule. One way to probe the possible polarization of hidden s bar s pairs in the nucleon may be via Lambda polarization in deep-inelastic scattering.Comment: 8 pages LaTeX, 10 figures, to appear in the Proceedings of the International Conference on Parity Violation and Hadronic Structure, Grenoble, June 200

    Z^* Resonances: Phenomenology and Models

    Get PDF
    We explore the phenomenology of, and models for, the Z^* resonances, the lowest of which is now well established, and called the Theta. We provide an overview of three models which have been proposed to explain its existence and/or its small width, and point out other relevant predictions, and potential problems, for each. The relation to what is known about KN scattering, including possible resonance signals in other channels, is also discussed.Comment: 29 pages, uses RevTeX4; expanded version (published form

    Evolution of grain boundary network topology in 316L austenitic stainless steel during powder hot isostatic pressing

    Get PDF
    The grain boundary network evolution of 316L austenitic steel powder during its densification by hot isostatic pressing (HIPing) was investigated. While the as-received powder contained a network of random high angle grain boundaries, the fully consolidated specimen had a large fraction of annealing twins, indicating that during densification, the microstructure evolves via recrystallization. By interrupting the HIPing process at different points in time, microstructural changes were tracked quantitatively at every stage using twin boundary fractions, distribution of different types of triple junctions, and the parameters associated with twin related domains (TRDs). Results revealed that, with increase in temperature, (i) the fraction of annealing twins increased steadily, but they mostly were not part of the grain boundary network in the fully consolidated specimen and (ii) the average number of grains within a TRD, the length of longest chain, and twinning polysynthetism increased during HIPing and (iii) the powder characteristics and the HIPing parameters have a strong influence on the development of grain boundary network. Based on the results obtained, possible alterations to the HIPing process are discussed, which could potentially allow twin induced grain boundary engineering

    Comparative Analysis of Calcineurin Inhibitor-Based Methotrexate and Mycophenolate Mofetil-Containing Regimens for Prevention of Graft-versus-Host Disease after Reduced-Intensity Conditioning Allogeneic Transplantation

    Get PDF
    The combination of a calcineurin inhibitor (CNI) such as tacrolimus (TAC) or cyclosporine (CYSP) with methotrexate (MTX) or with mycophenolate mofetil (MMF) has been commonly used for graft-versus-host disease (GVHD) prophylaxis after reduced-intensity conditioning (RIC) allogeneic hematopoietic cell transplantation (alloHCT), but there are limited data comparing efficacy of the 2 regimens. We evaluated 1564 adult patients who underwent RIC alloHCT for acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), and myelodysplastic syndrome (MDS) from 2000 to 2013 using HLA-identical sibling (matched related donor [MRD]) or unrelated donor (URD) peripheral blood graft and received CYSP or TAC with MTX or MMF for GVHD prophylaxis. Primary outcomes of the study were acute and chronic GVHD and overall survival (OS). The study divided the patient population into 4 cohorts based on regimen: MMF-TAC, MMF-CYSP, MTX-TAC, and MTX-CYSP. In the URD group, MMF-CYSP was associated with increased risk of grade II to IV acute GVHD (relative risk [RR], 1.78; P <.001) and grade III to IV acute GVHD (RR, 1.93; P =.006) compared with MTX-TAC. In the URD group, use of MMF-TAC (versus MTX-TAC) lead to higher nonrelapse mortality. (hazard ratio, 1.48; P =.008). In either group, no there was no difference in chronic GVHD, disease-free survival, and OS among the GVHD prophylaxis regimens. For RIC alloHCT using MRD, there are no differences in outcomes based on GVHD prophylaxis. However, with URD RIC alloHCT, MMF-CYSP was inferior to MTX-based regimens for acute GVHD prevention, but all the regimens were equivalent in terms of chronic GVHD and OS. Prospective studies, targeting URD recipients are needed to confirm these results

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe
    corecore