326 research outputs found

    Lag time and parameter mismatches in synchronization of unidirectionally coupled chaotic external cavity semiconductor lasers

    Full text link
    We report an analysis of synchronization between two unidirectionally coupled chaotic external cavity master/slave semiconductor lasers with two characteristic delay times, where the delay time in the coupling is different from the delay time in the coupled systems themselves. We demonstrate for the first time that parameter mismatches in photon decay rates for the master and slave lasers can explain the experimental observation that the lag time is equal to the coupling delay time.Comment: LaTex, 5 pages, submitted to PRE(R

    Diffusion Resonances in Action Space for an Atom Optics Kicked Rotor with Decoherence

    Full text link
    We numerically investigate momentum diffusion rates for the pulse kicked rotor across the quantum to classical transition as the dynamics are made more macroscopic by increasing the total system action. For initial and late time rates we observe an enhanced diffusion peak which shifts and scales with changing kick strength, and we also observe distinctive peaks around quantum resonances. Our investigations take place in the context of a system of ultracold atoms which is coupled to its environment via spontaneous emission decoherence, and the effects should be realisable in ongoing experiments.Comment: 4 Pages, RevTeX 4, 5 Figures. Updated Figures, Minor Changes to text, Corrected Reference

    Delayed Self-Synchronization in Homoclinic Chaos

    Full text link
    The chaotic spike train of a homoclinic dynamical system is self-synchronized by re-inserting a small fraction of the delayed output. Due to the sensitive nature of the homoclinic chaos to external perturbations, stabilization of very long periodic orbits is possible. On these orbits, the dynamics appears chaotic over a finite time, but then it repeats with a recurrence time that is slightly longer than the delay time. The effect, called delayed self-synchronization (DSS), displays analogies with neurodynamic events which occur in the build-up of long term memories.Comment: Submitted to Phys. Rev. Lett., 13 pages, 7 figure

    Quantum Limits of Stochastic Cooling of a Bosonic Gas

    Full text link
    The quantum limits of stochastic cooling of trapped atoms are studied. The energy subtraction due to the applied feedback is shown to contain an additional noise term due to atom-number fluctuations in the feedback region. This novel effect is shown to dominate the cooling efficiency near the condensation point. Furthermore, we show first results that indicate that Bose--Einstein condensation could be reached via stochastic cooling.Comment: 5 pages, 3 figures, to appear in Phys. Rev.

    Statistical mechanics of semiflexible ribbon polymers

    Full text link
    The statistical mechanics of a ribbon polymer made up of two semiflexible chains is studied using both analytical techniques and simulation. The system is found to have a crossover transition at some finite temperature, from a type of short range order to a fundamentally different sort of short range order. In the high temperature regime, the 2-point correlation functions of the object are identical to worm-like chains, while in the low temperature regime they are different due to a twist structure. The crossover happens when the persistence length of individual strands becomes comparable to the thickness of the ribbon. In the low temperature regime, the ribbon is observed to have a novel ``kink-rod'' structure with a mutual exclusion of twist and bend in contrast to smooth worm-like chain behaviour. This is due to its anisotropic rigidity and corresponds to an {\it infinitely} strong twist-bend coupling. The double-stranded polymer is also studied in a confined geometry. It is shown that when the polymer is restricted in a particular direction to a size less than the bare persistence length of the individual strands, it develops zigzag conformations which are indicated by an oscillatory tangent-tangent correlation function in the direction of confinement. Increasing the separation of the confining plates leads to a crossover to the free behaviour, which takes place at separations close to the bare persistence length. These results are expected to be relevant for experiments which involve complexation of two or more stiff or semiflexible polymers.Comment: 20 pages, 11 figures. PRE (in press

    Plasma NGAL levels in stable kidney transplant recipients and the risk of allograft loss

    Get PDF
    BACKGROUND: The object of this study was to investigate the utility of Neutrophil gelatinase-associated lipocalin (NGAL) and Calprotectin (CPT) to predict long-term graft survival in stable kidney transplant recipients (KTR). METHODS: 709 stable outpatient KTR were enrolled >2 months post-transplant. The utility of plasma and urinary NGAL (pNGAL, uNGAL) and plasma and urinary CPT at enrollment to predict death-censored graft loss (GL) was evaluated during a 58-month follow-up. RESULTS: Among biomarkers, pNGAL showed best predictive ability for graft loss and was the only biomarker with an AUC > 0.7 for GL within 5 years. Patients with GL within 5 years (n=49) had a median pNGAL of 304[IQR 235-358] versus 182[IQR 128 -246]ng/ml with surviving grafts (p<0.001). Time-dependent Receiver operating characteristic analyses at 58 months indicated an Area-Under-the-Curve (AUC) for pNGAL of 0.795, serum creatinine (sCr) based estimated glomerular filtration rate (eGFR) CKD EPI had an AUC of 0.866. pNGAL added to a model based on conventional risk factors for GL with death as competing risk (age, transplant age, presence of donor specific antibodies, presence of proteinuria, history of delayed graft function) had a strong independent association with GL (subdistribution Hazard ratio (sHR) for binary log transfomed pNGAL (log2 (pNGAL)) (3.4 95% CI 2.24-5.15), p<0.0001). This association was substantially attenuated when eGFR was added to the model (sHR for log2 (pNGAL) 1.63 95% CI 0.92-2.88, p=0.095). Category-free net reclassification improvement of a risk model including log2(pNGAL) additionally to conventional risk factors and eGFR was 54.3% (95% CI 9.2 to 99.3%) but C-statistic did not improve significantly. CONCLUSIONS: pNGAL was an independent predictor of renal allograft loss in stable KTR from one transplant center but did not show consistent added value when compared to baseline predictors including the conventional marker eGFR. Future studies in larger cohorts are warranted

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes
    corecore