198 research outputs found
Global Search for New Physics with 2.0/fb at CDF
Data collected in Run II of the Fermilab Tevatron are searched for
indications of new electroweak-scale physics. Rather than focusing on
particular new physics scenarios, CDF data are analyzed for discrepancies with
the standard model prediction. A model-independent approach (Vista) considers
gross features of the data, and is sensitive to new large cross-section
physics. Further sensitivity to new physics is provided by two additional
algorithms: a Bump Hunter searches invariant mass distributions for "bumps"
that could indicate resonant production of new particles; and the Sleuth
procedure scans for data excesses at large summed transverse momentum. This
combined global search for new physics in 2.0/fb of ppbar collisions at
sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D
Rapid Communication
Search for the standard model Higgs boson decaying to a pair in events with no charged leptons and large missing transverse energy using the full CDF data set
We report on a search for the standard model Higgs boson produced in
association with a vector boson in the full data set of proton-antiproton
collisions at TeV recorded by the CDF II detector at the
Tevatron, corresponding to an integrated luminosity of 9.45 fb. We
consider events having no identified charged lepton, a transverse energy
imbalance, and two or three jets, of which at least one is consistent with
originating from the decay of a quark. We place 95% credibility level upper
limits on the production cross section times standard model branching fraction
for several mass hypotheses between 90 and . For a Higgs
boson mass of , the observed (expected) limit is 6.7
(3.6) times the standard model prediction.Comment: Accepted by Phys. Rev. Let
Search for the standard model Higgs boson decaying to a bb pair in events with one charged lepton and large missing transverse energy using the full CDF data set
We present a search for the standard model Higgs boson produced in
association with a W boson in sqrt(s) = 1.96 TeV p-pbar collision data
collected with the CDF II detector at the Tevatron corresponding to an
integrated luminosity of 9.45 fb-1. In events consistent with the decay of the
Higgs boson to a bottom-quark pair and the W boson to an electron or muon and a
neutrino, we set 95% credibility level upper limits on the WH production cross
section times the H->bb branching ratio as a function of Higgs boson mass. At a
Higgs boson mass of 125 GeV/c2 we observe (expect) a limit of 4.9 (2.8) times
the standard model value.Comment: Submitted to Phys. Rev. Lett (v2 contains clarifications suggested by
PRL
Search for the standard model Higgs boson decaying to a bb pair in events with two oppositely-charged leptons using the full CDF data set
We present a search for the standard model Higgs boson produced in
association with a Z boson in data collected with the CDF II detector at the
Tevatron, corresponding to an integrated luminosity of 9.45/fb. In events
consistent with the decay of the Higgs boson to a bottom-quark pair and the Z
boson to electron or muon pairs, we set 95% credibility level upper limits on
the ZH production cross section times the H -> bb branching ratio as a function
of Higgs boson mass. At a Higgs boson mass of 125 GeV/c^2 we observe (expect) a
limit of 7.1 (3.9) times the standard model value.Comment: To be submitted to Phys. Rev. Let
Measurement of the Bs Lifetime in Fully and Partially Reconstructed Bs -> Ds- (phi pi-)X Decays in pbar-p Collisions at sqrt(s) = 1.96 TeV
We present a measurement of the Bs lifetime in fully and partially
reconstructed Bs -> Ds(phi pi)X decays in 1.3 fb-1 of pbar-p collisions at
sqrt(s) = 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron.
We measure tau(Bs) = 1.518 +/- 0.041 (stat.) +/- 0.027 (syst.) ps. The ratio of
this result and the world average B0 lifetime yields tau(Bs)/tau(B0) = 0.99
+/-0.03, which is in agreement with recent theoretical predictions.Comment: submitted to Phys. Rev. Let
Observation of the structure in the Mass Spectrum in cays
The observation of the structure in decays produced in collisions at \sqrt{s}=1.96~\TeV is
reported with a statistical significance greater than 5 standard deviations. A
fit to the mass spectrum is performed assuming the presence of a
Breit-Wigner resonance. The fit yields a signal of resonance
events, and resonance mass and width of
4143.4^{+2.9}_{-3.0}(\mathrm{stat})\pm0.6(\mathrm{syst})~\MeVcc and
15.3^{+10.4}_{-6.1}(\mathrm{stat})\pm2.5(\mathrm{syst})~\MeVcc respectively.
The parameters of this resonance-like structure are consistent with values
reported from an earlier CDF analysis.Comment: 7 pages, 2 figures, submited to Phys. Rev. Let
Search for charged Higgs bosons in decays of top quarks in p-pbar collisions at sqrt(s) = 1.96 TeV
7 pages, 2 figuresWe report the recent charged Higgs search in top quark decays in 2.2/fb CDF data. This is the first attempt to search for charged Higgs using fully reconstructed mass assuming H->c-sbar in small tan beta region. No evidence of a charged Higgs is observed in the CDF data, hence 95% upper limits are placed at B(t->H+b)We report on the first direct search for charged Higgs bosons decaying into cs̅ in tt̅ events produced by pp̅ collisions at √s=1.96 TeV. The search uses a data sample corresponding to an integrated luminosity of 2.2 fb-1 collected by the CDF II detector at Fermilab and looks for a resonance in the invariant mass distribution of two jets in the lepton+jets sample of tt̅ candidates. We observe no evidence of charged Higgs bosons in top quark decays. Hence, 95% upper limits on the top quark decay branching ratio are placed at B(t→H+b)< 0.1 to 0.3 for charged Higgs boson masses of 60 to 150 GeV/c2 assuming B(H+→cs̅ )=1.0. The upper limits on B(t→H+b) are also used as model-independent limits on the decay branching ratio of top quarks to generic scalar charged bosons beyond the standard model.Peer reviewe
Physical Processes in Star Formation
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio
Measurement of the difference of CP-violating asymmetries in D0 -> K+K- and D0 ->pi+pi- decays at CDF
We report a measurement of the difference (Delta Acp) between time-integrated
CP--violating asymmetries in D0-> K+ K- and D0-> pi+pi- decays reconstructed in
the full data set of proton-antiproton collisions collected by the Collider
Detector at Fermilab, corresponding to 9.7 fb-1 of integrated luminosity. The
strong decay D*+->D0 pi+ is used to identify the charm meson at production as
D0 or anti-D0. We measure Delta Acp = [-0.62 +- 0.21 (stat) +- 0.10 (syst)] %,
which differs from zero by 2.7 Gaussian standard deviations.This result
supports similar evidence for CP violation in charm-quark decays obtained in
proton-proton collisions.Comment: Phys. Rev. Lett. 109, 111801 (2012
- …