72 research outputs found

    Quark Condensate in the Deuteron

    Get PDF
    We study the changes produced by the deuteron on the QCD quark condensate by means the Feynman-Hellmann theorem and find that the pion mass dependence of the pion-nucleon coupling could play an important role. We also discuss the relation between the many body effect of the condensate and the meson exchange currents, as seen by photons and pions. For pion probes, the many-body term in the physical amplitude differs significantly from that of soft pions, the one linked to the condensate. Thus no information about the many-body term of the condensate can be extracted from the pion-deuteron scattering length. On the other hand, in the Compton amplitude, the relationship with the condensate is a more direct one.Comment: to appear in Physics Review C (19 pages, 3 figures

    Adsorption of Streptococcus mutans on Chemically Treated Hydroxyapatite

    Full text link
    Adsorption of Streptococcus mutans on hydroxyapatite and chemically treated hydroxyapatite was studied. Zeta potentials of the surfaces were measured. Chemically treated hydroxyapatite gave higher ζ potentials and lower S mutans adsorption.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67845/2/10.1177_00220345780570091601.pd

    g_{\pi \Lambda \Sigma} and g_{K \Sigma \Xi} from QCD sum rules

    Full text link
    The coupling constants g_{\pi \Lambda \Sigma} and g_{K \Sigma \Xi} are calculated in the QCD sum rule approach using the three-point function method and taking into account the SU(3) symmetry breaking effects. The pattern of SU(3) breaking appears to be different from that based on SU(3) relations.Comment: revtex, 9 page

    Macroscopic quantum superpositions in highly-excited strongly-interacting many-body systems

    Full text link
    We demonstrate a break-down in the macroscopic (classical-like) dynamics of wave-packets in complex microscopic and mesoscopic collisions. This break-down manifests itself in coherent superpositions of the rotating clockwise and anticlockwise wave-packets in the regime of strongly overlapping many-body resonances of the highly-excited intermediate complex. These superpositions involve 104\sim 10^4 many-body configurations so that their internal interactive complexity dramatically exceeds all of those previously discussed and experimentally realized. The interference fringes persist over a time-interval much longer than the energy relaxation-redistribution time due to the anomalously slow phase randomization (dephasing). Experimental verification of the effect is proposed.Comment: Title changed, few changes in the abstract and in the main body of the paper, and changes in the font size in the figure. Uses revTex4, 4 pages, 1 ps figur

    Molecular dynamics approach: from chaotic to statistical properties of compound nuclei

    Full text link
    Statistical aspects of the dynamics of chaotic scattering in the classical model of α\alpha-cluster nuclei are studied. It is found that the dynamics governed by hyperbolic instabilities which results in an exponential decay of the survival probability evolves to a limiting energy distribution whose density develops the Boltzmann form. The angular distribution of the corresponding decay products shows symmetry with respect to π/2\pi/2 angle. Time estimated for the compound nucleus formation ranges within the order of 102110^{-21}s.Comment: 11 pages, LaTeX, non

    Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots

    Full text link
    We show that the parametric correlations of the conductance peak amplitudes of a chaotic or weakly disordered quantum dot in the Coulomb blockade regime become universal upon an appropriate scaling of the parameter. We compute the universal forms of this correlator for both cases of conserved and broken time reversal symmetry. For a symmetric dot the correlator is independent of the details in each lead such as the number of channels and their correlation. We derive a new scaling, which we call the rotation scaling, that can be computed directly from the dot's eigenfunction rotation rate or alternatively from the conductance peak heights, and therefore does not require knowledge of the spectrum of the dot. The relation of the rotation scaling to the level velocity scaling is discussed. The exact analytic form of the conductance peak correlator is derived at short distances. We also calculate the universal distributions of the average level width velocity for various values of the scaled parameter. The universality is illustrated in an Anderson model of a disordered dot.Comment: 35 pages, RevTex, 6 Postscript figure

    CHIRAL BACKGROUND FOR THE TWO PION EXCHANGE NUCLEAR POTENTIAL: A PARAMETRIZED VERSION

    Full text link
    We argue that the minimal chiral background for the two-pion exchange nucleon-nucleon interaction has nowadays a rather firm conceptual basis, which entitles it to become a standard ingredient of any modern potential. In order to facilitate applications, we present a parametrized version of a configuration space potential derived previously. We then use it to assess the phenomenological contents of some existing NN potentials.Comment: REVTEX style, 16 pages, 5 PostScript figures compressed, tarred and uuencode

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Physical and biogeochemical controls on the variability in surface pH and calcium carbonate saturation states in the Atlantic sectors of the Arctic and Southern Oceans

    Get PDF
    Polar oceans are particularly vulnerable to ocean acidification due to their low temperatures and reduced buffering capacity, and are expected to experience extensive low pH conditions and reduced carbonate mineral saturations states (Ω) in the near future. However, the impact of anthropogenic CO2 on pH and Ω will vary regionally between and across the Arctic and Southern Oceans. Here we investigate the carbonate chemistry in the Atlantic sector of two polar oceans, the Nordic Seas and Barents Sea in the Arctic Ocean, and the Scotia and Weddell Seas in the Southern Ocean, to determine the physical and biogeochemical processes that control surface pH and Ω. High-resolution observations showed large gradients in surface pH (0.10–0.30) and aragonite saturation state (Ωar) (0.2–1.0) over small spatial scales, and these were particularly strong in sea-ice covered areas (up to 0.45 in pH and 2.0 in Ωar). In the Arctic, sea-ice melt facilitated bloom initiation in light-limited and iron replete (dFe>0.2 nM) regions, such as the Fram Strait, resulting in high pH (8.45) and Ωar (3.0) along the sea-ice edge. In contrast, accumulation of dissolved inorganic carbon derived from organic carbon mineralisation under the ice resulted in low pH (8.05) and Ωar (1.1) in areas where thick ice persisted. In the Southern Ocean, sea-ice retreat resulted in bloom formation only where terrestrial inputs supplied sufficient iron (dFe>0.2 nM), such as in the vicinity of the South Sandwich Islands where enhanced pH (8.3) and Ωar (2.3) were primarily due to biological production. In contrast, in the adjacent Weddell Sea, weak biological uptake of CO2 due to low iron concentrations (dFe<0.2 nM) resulted in low pH (8.1) and Ωar (1.6). The large spatial variability in both polar oceans highlights the need for spatially resolved surface data of carbonate chemistry variables but also nutrients (including iron) in order to accurately elucidate the large gradients experienced by marine organisms and to understand their response to increased CO2 in the future
    corecore