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abstract:

We study the changes produced by the deuteron on the QCD quark condensate by

means the Feynman-Hellmann theorem and find that the pion mass dependence of the

pion-nucleon coupling could play an important role. We also discuss the relation between

the many body effect of the condensate and the meson exchange currents, as seen by

photons and pions. For pion probes, the many-body term in the physical amplitude

differs significantly from that of soft pions, the one linked to the condensate. Thus no

information about the many-body term of the condensate can be extracted from the

pion-deuteron scattering length. On the other hand, in the Compton amplitude, the

relationship with the condensate is a more direct one.

I. INTRODUCTION

The QCD vacuum has a complex structure, with condensates of quarks and gluons,

that can be disturbed by the presence of hadronic matter. In the case of nucleons, for

instance, valence quarks give rise to an anti-screening interaction, which reduces the
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magnitude of the condensate. This gives rise to the nucleon sigma-term (σN), that can

be extracted from pion-nucleon scattering.

In the case of nuclei, in first approximation the effects of idependent nucleons add

up [1]. But as nucleons are interacting, there also exist modifications of the condensate

due to the nucleon-nucleon potential. It is reasonable to believe that the influence of this

potential is more important in large nuclei, but the study of these systems is complicated

and requires simplifying approximations. Therefore it is interesting to look for effects of

the NN interaction over the condensate in light nuclei. The deuteron, in particular, has

been extensively explored and allows calculations with little theoretical uncertainties.

In principle, one should use QCD to study the reaction of the quark condensate to

the presence of hadronic matter. However, as this is beyond our present capabilities, we

use effective interactions of colourless hadrons in place of the fundamental ones. Effective

theories should be as close as possible to QCD and, in particular, share its symmetries.

The interactions of quarks and gluons are approximately invariant under chiral transfor-

mations and broken, in the SU(2) sector, by the very small quark masses. Therefore, at

the hadron level, one requires the effective theory to possess approximate chiral symmetry,

now broken by µ, the pion mass.

In the case of NN interactions, most of the dynamics relevant at large and intermediate

energies can be described, in the framework of effective theories, by exchanges of one and

two pions [2–4]. For the short distance region, on the other hand, neither meson nor quark

models produce precise quantitative predictions and realistic potentials must rely on free

parameters. In the case of the deuteron, these short distance uncertainties are minimized,

for it is heavily dominated by the one pion exchange potential (OPEP) [5–7].

In this work we discuss the disturbances of the QCD vacuum produced by the deuteron.

In sect. II, we concentrate on the dependence of its binding energy on the quark mass, to

derive the quark condensate using the Feynman-Hellmann theorem. The changes induced

in the quark condensate by the nuclear force can be related to exchange currents, as

probed by means of both photons and pions. Thus, in sect. III we discuss the case of

electromagnetic probes and in sect. IV we study πd scattering. Finally, in sect. V we
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present our results and discuss how they are related to measurable quantities.

II. FEYNMAN-HELLMANN

The deuteron mass is written as M = 2m − ε, where m is the nucleon mass and ε is

the binding energy, which we take as positive. The part of M due to chiral symmetry

breaking corresponds to the deuteron sigma-term, given by

σd = −
∫
d3r (〈d| LSB |d〉 − 〈0| LSB |0〉) , (1)

where LSB is the symmetry breaking term of the QCD Lagrangian. In the symmetric

isospin limit it is given by [8,13] LSB = −m̂ q̄q, where q is the SU(2) quark field and m̂

is the average quark mass: m̂ = (mu + md)/2. At leading order in the chiral expansion

the effective and fundamental symmetry breaking parameters are related by a constant,

denoted by B: µ2 = 2B m̂. As m̂ and µ2 are small, we have

σd = m̂
dM

dm̂
= µ2 dM

dµ2
(2)

and write σd = 2σN + σε, where σN = µ2 dm/dµ2 and σε describes the changes in the

condensate as compared to an assembly of static non-interacting nucleons.

In the framework of the Schrödinger equation, the binding energy is

−ε =
∫
d3r ψ∗

(
−∇2

m
+ V

)
ψ , (3)

where ψ is the deuteron wave function. Thus

− dε

dµ2
=
∫
d3r

[
ψ∗
(
σN

µ2

∇2

m2
+
dV

dµ2

)
ψ +

dψ∗

dµ2

(
−∇2

m
+ V

)
ψ + ψ

(
−∇2

m
+ V

)
dψ∗

dµ2

]

=
∫
d3r

[
ψ∗
(
σN

µ2

∇2

m2
+
dV

dµ2

)
ψ − ε

d

dµ2
(ψ∗ψ)

]
. (4)

The term proportional to ε in this result does not contribute when the deuteron wave

function is kept properly normalized and we write

σε =
∫
d3r ψ∗

(
σN

∇2

m2
+ µ2 dV

dµ2

)
ψ . (5)
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The first term on the r.h.s. of this equation is the effect of the scalar nucleon number

and reduces the sigma commutator by a factor (1−T/m), where T is the nucleon kinetic

energy, as compared to the additive assumption. Using the equation of motion, we have

σε =
∫
d3r ψ∗

[
σN

m
(V + ε) + µ2 dV

dµ2

]
ψ . (6)

The contribution proportional to ε is tiny and will not be considered in the sequence.

The deuteron is heavily dominated by the one pion exchange potential (Vπ) and we write

the full NN interaction as

V = V̄π +W , (7)

where V̄π is the OPEP regularized at small distances and W represents other short and

medium range effects, associated with either meson or quark dynamics. In the absence of

a theory for the influence of chiral symmetry breaking over both W and the regularizing

potential, we assume that these functions do not depend explicitly on µ.

For the deuteron channel one has τ (1) ·τ (2) = −3 and the OPEP reads

Vπ = −
(
gA

fπ

)2
µ3

16π

[
σ(1) ·σ(2) (UC −G) + S12 UT

]
, (8)

where

UC =
e−µr

µr
, (9)

UT =

(
1 +

3

µr
+

3

µ2r2

)
e−µr

µr
(10)

and G is proportional to a delta-function: G = 4π/µ3 δ3(r). The effects of this last term

are cancelled by the regularization procedure and we skip them in the sequence.

The derivative of Vπ with respect to µ2 is

dVπ

dµ2
= 2

fπ

gA

(
d

dµ2

gA

fπ

)
Vπ +

1

2

(
gA

fπ

)2
µ

16π

[
σ(1) ·σ(2)

(
1− 2

µr

)
+ S12

(
1+

1

µr

)]
e−µr

≡ 2
fπ

gA

(
d

dµ2

gA

fπ

)
Vπ +

(
dVπ

dµ2

)
gA
fπ

. (11)
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This allows eq.(6) to be written as

σε = 〈µ2 dV̄π

dµ2
〉 gA

fπ
+ c 〈V̄π〉 . (12)

with

〈V̄π〉 ≡
∫
d3r ψ∗ V̄π ψ , (13)

〈µ2dV̄π

dµ2
〉 gA

fπ
≡
∫
d3r ψ∗ µ2

(
dV̄π

dµ2

)
gA
fπ

ψ , (14)

and

c =
σN

m
+ 2µ2

(
1

gA

dgA

dµ2
− 1

fπ

dfπ

dµ2

)
. (15)

The quantity σε represents the part of the deuteron σ-term due to NN intraction and

may be probed by scalar sources. In practice, these sources may be associated with either

photons or pions, as we discuss in the next sections. In order to interpret eq.(12), one

notes that the coefficient c, given by eq.(15), vanishes in the chiral limit: µ2 = 0 ⇒ c = 0.

Hence, at tree level, only the first term contributes, which represents the interaction of

the scalar source with the pion exchanged between the nucleons. The coefficient c, on the

other hand, receives contributions from the kinetic energy term and from the derivative

of the πNN coupling constant. The latter, as we show in the sequence, corresponds to the

interaction of the scalar source with the pion cloud that dresses the πN vextex.

In order to estimate the derivative of fπ, we use the result produced by Gasser and

Leutwyler [8] and write:

dfπ

dµ2
=

d

dµ2

{
F

[
1 +

µ2

F 2

(
`r4(λ) − 1

16π2
ln
µ2

λ2

)]}

=
1

F

[
`r4(λ) − 1

16π2

(
1 + ln

µ2

λ2

)]
, (16)

where F is the value of fπ for µ = 0, `r4(λ) is a renormalization constant and λ is the

renormalization scale. As far as the derivative of gA is concerned, we use the expression

derived by Mojžǐs [9] and by Fearing, Lewis, Mobed and Scherer [10] and have
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dgA

dµ2
=

d

dµ2

{
GA

[
1 +

4µ2

m2
a3 − µ2G2

A

16π2F 2
− µ2

16π2F 2

(
1 + 2G2

A

)
ln
µ2

λ2

]
+

µ2

4π2F 2
br17(λ)

}

= GA

[
4a3

m2
− G2

A

16π2F 2
− 1

16π2F 2

(
1 + 2G2

A

) (
1 + ln

µ2

λ2

)]
+

1

4π2F 2
br17(λ) , (17)

where GA is the value of gA in the limit µ → 0 and br17(λ) is a constant. Note that the

expression adopted for gA, within curly brackets, is slightly different from that obtained

earlier by Bernard, Kaiser and Meissner [11] and consistent [12] with that produced by

Gasser, Sainio and Švarc [13].

For future purposes, we write down the following results

〈Vπ〉 = −
(
gA

fπ

)2
µ3

16π

∫
dr
[
u2

+ 2
√

8

(
1 +

3

µr
+

3

µ2r2

)
uw −

(
1 +

6

µr
+

6

µ2r2

)
w2

]
e−µr

µr
, (18)

〈µ2 dVπ

dµ2
〉 gA

fπ
=

(
gA

fπ

)2
µ3

32π

∫
dr
[
(µr − 2)u2

+ 2
√

8 (µr + 1)uw − (µr + 4)w2
] e−µr

µr
, (19)

where u and w are the standard S and D components of the deuteron wave function.

These expressions contain negative powers of r, but this does not pose problems for the

integration, even in the case of unregularized potentials, since u and w vanish at the origin.

The numerical implications of the results presented here will be explored in sect. V. We

now discuss some possible ways of probing the many-body effects of the condensate.

III. ELECTROMAGNETIC PROBES

A probe which couples locally to the pion field φ is sensitive to the quantity 〈A|φ2|A〉,
i.e., to the nuclear condensate. In particular, when a nucleus A is probed by electromag-

netic interactions, the many body effects of the condensate correspond to meson exchange

contributions to the forward Compton amplitude FA
mec(0), for soft photons. This relation-

ship was established by Chanfray and Ericson [14], using the static approximation, but it

is more general and its derivation does not require this assumption. Indeed, in their work
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on the extension of the Bethe-Levinger sum rule, Ericson, Rosa-Clot and Kulagin [15]

have shown that FA
mec(0) contains a pion exchange term, which is the seagull represented

in fig. 1(a) and can be expressed as:

FA
mec(0) = −2

3
e2
∫
dr
(
〈A|φ2|A〉 − A〈N |φ2|N〉

)
, . (20)

The second term in the r.h.s. of eq.(20) represents the expectation value of φ2 for an

assembly of free nucleons, which has to be subtracted to obtain the exchange piece.

On the other hand, the matrix element 〈A|φ2|A〉 is related to the quark condensate

by LSB, the chiral symmetry breaking term in the Lagrangian for the SU(2) sector,

as discussed by Chanfray and Ericson [14]. In the case of QCD one has LSB = −m̂ q̄q,

assuming mu = md = m̂. This symmetry breaking term transforms according to the ( 1
2
, 1

2
)

representation of SU(2) × SU(2) and one requires the same to happen with the effective

counterpart. In the case of non-linear realizations of the symmetry, this corresponds to

the choice

LSB = µ2fπ

√
f 2

π − φ2 . (21)

Imposing the equivalence of the fundamental and effective descriptions, we obtain

〈A|LSB|A〉 = −m̂ 〈A|q̄q|A〉

= µ2f 2
π − 1

2
µ2〈A|φ2|A〉 + · · · (22)

In the case of the vacuum, it yields the Gell-Mann-Oakes and Renner relation:

−m̂ 〈0|q̄q|0〉 = µ2f 2
π . We apply this relation to both nuclei and free nucleons. Using

these results in eq.(20), we obtain the following relation between the condensate and the

meson exchange Compton amplitude

F exch
A (0) = − 4

3
e2 f 2

π

∫
dr

(〈A|q̄q|A〉 − A〈N |q̄q|N〉
〈0|q̄q|0〉

)
, (23)

which is the same result of ref. [14], but now obtained without the use of the static

approximation. In the case of the deuteron, the exchange amplitude is related to the σε

calculated in the previous section through
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F exch
A (0) =

4 e2

3 µ2
σε . (24)

Two comments on formula (23) are in order. The soft photon amplitude on deuteron

is given by the Thomson limit: Fd(0) = −e2/M . The exchange part F exch
A (0) is hidden in

this term together with other contributions and they all add up to the Thomson value.

The second remark concerns the composition of σε, built of three terms: the kinetic

energy term, the derivative of the πNN coupling constant, and the derivative of the

pion propagator. When transposed into the Compton amplitude, the third part gives

rise to the usual meson exchange term of fig. 1(a), where two photons interact with an

exchanged pion. The derivative of the πNN coupling attaches the two photons to the

πNN vertex, fig.1(b). As far as the kinetic energy term is concerned, the fact that φ2

is a scalar object means that its expectaton value involves a ψ̄ψ combination of nucleon

fields, which displays the same reduction factor (1 − T/m) as the sigma commutator,

with respect to the ordinary nucleon density. Similar remarks apply to pion rescattering.

Numerical values will be discussed in Sect.V.

IV. PION PROBES

Pions exchanged between nucleons may also be probed by means of external pions.

In this section we consider amec, the MEC contribution to the pion-deuteron scattering

lenght. The quadri-momenta for pions at rest are k = k′ = (ω, 0), where ω = µ or

0 depending on whether the pions are physical or soft. The πd scattering length is

generically given by

a (ω) =
µ

2π (1 + µ/M)

∫
dr ψ∗ (r) t (r;ω)ψ (r) , (25)

where t is the part of the amplitude for the process πNN → πNN which does not contain

two positive energy nucleons propagating forward in time.

When PCAC holds, the sigma commutator is related to the soft pion scattering am-

plitude. Hence the value of σε is associated with many body effects in the soft pion

PCAC amplitude, since aPCAC
mec (0) α σε [16]. We confront this relation with the direct

8



evaluation of amec(µ), the quantity accessible to experiment. The structure of this ampli-

tude was already discussed in ref. [17] and here we are interested in its relationship with

σε. This question is important because it concerns the possibility of obtaining empirical

information about σε from measurements of the πd scattering length.

For soft pions, the operator tmec is completely dominated by processes involving only

pions and nucleons, whereas for physical pions there are other contributions, mainly due

to ∆ excitations.

In the πN sector, the basic interactions are obtained from the following non-linear

Lagrangian, approximately invariant under SU(2)×SU(2)

Lint
πN =

1

8f 2
π

[
∂µφ2∂µφ2 − µ2φ4

]
+

gA

2fπ

N̄γµγ5τN ·∂µφ

− 1

4f 2
π

N̄γµτN ·φ × ∂µφ +
gA

8f 3
π

N̄γµγ5τN ·φ ∂µφ2 + · · · , (26)

designed to be used in the tree approximation.

The meson exchange currents are given by the diagrams shown in fig.2, which contain

pion propagators coupled to nucleons. Hence it is useful to parametrize the non relativistic

MEC contribution to t in the nucleon sector as

tNmec(q;ω) =
1

2µ

(
gA

2fπ

)2 {[∑
αn(ω)

] σ(1) ·q σ(2) ·q
(q2 + µ2)

+ α′
1(ω) µ2 σ(1) ·q σ(2) ·q

(q2 + µ2)2

}
, (27)

where q is the momentum exchanged between the nucleons and the coefficients αn are

determined dynamically, from the graphs of fig.2.

The evaluation of the diagrams 1-10 of fig.2 in the non relativistic tree approximation

yields [17]

α1 =
2

f 2
π

, (28)

α′
1 =

1

f 2
π

(
3 − 2

ω2

µ2

)
, (29)

α2 = − 2

f 2
π

, (30)

α3 + α4 + α5 + α6 =
2

f 2
π

ω2

m2
, (31)

α7 + α8 =

(
gA

2fπ

)2
ω2

m2
, (32)

α9 + α10 = 0. (33)
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As discussed in ref. [18], there is a cancellation between α1 and α2, required by chiral

symmetry. The results for α3 + α4 + α5 + α6 and α7 + α8 disagree with those of ref. [17]

by factors (−1) and (-3
2
) respectively, due to algebraic mistakes in that work, but this has

little influence over numerical results.

The MEC amplitude in configuration space is

tNmec(r;ω) =
1

2µ

1

3



[∑

αn(ω)
]
Vπ(r) − α′

1(ω) µ2

(
dVπ(r)

dµ2

)
gA
fπ


 . (34)

We now consider the contributions of the ∆ and σN to tmec. The former were studied

in ref. [17] and its efect can be incorporated into eq.(27) by means of the global coefficient

α∆ ω2/µ2, with α∆ = −0.429µ−2. The contribution of the πN sigma-term is given by

diagrams 1-4 of fig.3 and can be calculated by noting that it enters only in the isospin

symmetric πN amplitude A+. The corresponding part of this amplitude is denoted by A+
σ

and can be parametrized as [19]

A+
σ

(
t; k2, k′2

)
=

σN

µ2f 2
π

[
k′2 + k2 − µ2 + β

(
t− k′2 − k2

)]
(35)

and the value of β can be extracted from scattering data. The evaluation of the diagrams

of fig.3 yields, for the coefficients α,

ασ1 + ασ2 + ασ3 + ασ4 =
4

m

σN

f 2
πµ

2

[
ω2 −

(
q2 + µ2

)]
. (36)

The term proportional to (q2 + µ2) cancels the pion propagator, giving rise to a contact

interaction, which does not contribute when the OPEP is regularized. The overall MEC

contribution to the scattering length then becomes

amec(ω) =
1

4π(1 + µ/M)

1

3f 2
π

{[(
2 +

g2
A

4

)
ω2

m2
+ f 2

π α∆
ω2

µ2
+

4σN

m

ω2

µ2

]
〈Vπ〉

−
(

3 − 2
ω2

µ2

)
〈µ2dVπ

dµ2
〉 gA

fπ

}
(37)

In order to establish the relationship between amec(ω) and σε, we use eq.(12) and write

amec(ω) =
1

4π(1 + µ/M)

1

3f 2
π

{[(
2 +

g2
A

4

)
ω2

m2
+ f 2

π α∆
ω2

µ2
+

4σN

m

ω2

µ2

+ c

(
3 − 2

ω2

µ2

)]
〈Vπ〉 −

(
3 − 2

ω2

µ2

)
σε

}
. (38)
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In the soft pion limit (ω → 0) this result becomes

amec(0) = − 1

4π(1 + µ/M)

σε − c 〈Vπ〉
f 2

π

. (39)

For physical pions, on the other hand, one has

amec(µ) = − 1

4π(1 + µ/M)

1

3f 2
π

{
σε −

[(
2 +

g2
A

4

)
µ2

m2
+ f 2

π α∆ +
4σN

m
+ c

]
〈Vπ〉

}
. (40)

The first observation from eq.(39) is that amec(0) is not just proportional to σε, as in

the PCAC result, aPCAC
mec (0), but the term c 〈Vπ〉 which appears in the epression (12) of

σε is cancelled in amec(0). The reason for this difference is that the usual meson exchange

amplitude, amec, does not incorporate terms where the two pions are attached to the πNN

vertex through loop diagrams. These terms are instead present in the PCAC expression.

The fact that the term in c 〈Vπ〉 may give a large contribution to σε indicates a possible

importance also as an exchange correction. Moreover, inspecting eqs.(39) and (40), one

notes that the contribution proportional to dVπ/dµ
2 is three times larger for soft pions

than for physical pions, due to the strong energy dependence of the intermediate ππ

amplitude of diagram 1. This feature is consistent with the results found by Chanfray,

Ericson and Wambach [20], who studied the self energy Π(ω,k) of a pion propagating in

a gas of of pions. Using PCAC and the Hartree approximation, they found that

Π(ω,k) =
ρs

f 2
π

[
µ2 − 2

3

(
ω2 − k2

)]
, (41)

where ρs is the scalar density of the pions. Thus, for soft and physical pions one has,

respectively, Π(0, 0) = ρsµ
2/f 2

π and Π(µ, 0) = ρsµ
2/3f 2

π . As this self energy is related

to the MEC amplitude, both must change in the same proportion when one goes from

physical to soft pions.

In summary, the measurable meson exchange contribution written in eq.(40) has little

relation to the quark condensate. Therefore, the pion-deuteron scattering length pro-

vides no exploitable information about this condensate. In the next section we discuss

numerically the results produced here.
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V. RESULTS AND CONCLUSIONS

We estimate the numerical implications of the results produced in the previous sec-

tions and adopt the following values for the various constants: M=1875.61 MeV [21],

m=938.28 MeV [22], µ=139.57 MeV [22], gA=1.26 [22], fπ=93.3 MeV [22], σN=45 MeV

[23], α∆=-0.43 µ−2 [17], λ = µ [8], `r4(µ) = 4.3/16π2 [8], and a3 = −mσN/4µ
2 [9]. As very

little is known about the constant br17(µ), we neglect it in eq.(17). With these inputs, we

find a negative value for c: -0.30, which is strongly dominated by the derivative of the πN

coupling constant and has opposite sign to the kinetic energy term. Thus one has

[(2 + g2
A/4)µ2/m2 + f 2

π α∆ + 4σN/m+ c ] = [0.05 − 0.19 + 0.19 − 0.30] = −0.25 .

Expressions (18) and (19) are based on the assumption that the short range com-

ponents of the interaction are not important since the OPEP strongly dominates the

deuteron. In order to test this hypothesis, we consider the case of a toy potential con-

taining an OPEP tail and regularized by means of monopole form factors [24]. It has the

same form as eq.(8), with UC , G and UT given by

UC =
e−µr

µr
− ΛC

µ

e−ΛCr

ΛCr
− 1

2

µ

ΛC

(
Λ2

C

µ2
− 1

)
e−ΛCr , (42)

G = δ
1

2

µ

ΛC

(
Λ2

C

µ2
− 1

)2

e−ΛCr , (43)

UT =

(
1 +

3

µr
+

3

µ2r2

)
e−µr

µr
− Λ3

T

µ3

(
1 +

3

ΛT r
+

3

Λ2
T r

2

)
e−ΛT r

ΛTr

− 1

2

ΛT

µ

(
Λ2

T

µ2
− 1

)
(1 + ΛT r)

e−ΛT r

ΛT r
, (44)

where ΛC and ΛT are cut-offs for the central and tensor components and the parameter δ

regulates the strength of the short range function G. The pure OPEP results are recoverd

in the limit ΛC = ΛT → ∞ and δ = 1. It yields a regularized version of eqs.(18) and (19),

namely

〈Vπ〉 = −
(
gA

fπ

)2
µ3

16π

∫
dr
[
(UC−G) u2 + 2

√
8 UT uw + (UC−G−2UT )w2

]
, (45)
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〈µ2dVπ

dµ2
〉 gA

fπ
=

3

2
〈Vπ〉

−
(
gA

fπ

)2
µ3

16π

∫
dr µ2

[
d (UC−G)

dµ2
u2 + 2

√
8
dUT

dµ2
uw +

d (UC−G−2UT )

dµ2
w2

]
, (46)

with

µ2 dUC

dµ2
= − 1

2

[(
1 +

1

µr

)
e−µr − e−ΛCr

µr
− 1

2

µ

ΛC

(
Λ2

C

µ2
+ 1

)
e−ΛCr

]
, (47)

µ2 dG

dµ2
= −δ 1

4

µ

ΛC

(
3
Λ4

C

µ4
− 2

Λ2
C

µ2
− 1

)
e−ΛCr , (48)

µ2 dUT

dµ2
= −1

2

[(
1 +

4

µr
+

9

µ2r2
+

9

µ3r3

)
e−µr − 3

Λ3
T

µ3

(
1 +

3

ΛT r
+

3

Λ2
T r

2

)
e−ΛT r

ΛTr

− 1

2

ΛT

µ

(
3

Λ2
T

µ2
− 1

)
(1 + ΛTr)

e−ΛT r

ΛTr

]
, (49)

In general, the deuteron binding energy is a function of the form ε(gA, fπ, µ,ΛC, δ,ΛT ).

As gA, fπ and µ are kept fixed, the binding energy depends on the the short range

parameters ΛC , δ and ΛT . When constructing the deuteron, we fix two of them and look

for the third one so as to have ε = 2.2250 MeV.

TABLE I. Deuteron expectation for Vπ and µ2dVπ/dµ2, for the perturbative (OPEP) and

regularized (toy) one-pion exchange potentials, eqs.(18, 19) and eqs.(45, 46), σε, eq.(12), amec(0),

eq.(39), amec(µ), eq.(40) as functions of the inner parameters δ, ΛC and ΛT . The values quoted

for ΛC and ΛT were rounded up.

OPEP OPEP toy toy toy toy toy

δ ΛC ΛT 〈Vπ〉 〈µ2 dVπ
dµ2 〉 〈Vπ〉 〈µ2 dVπ

dµ2 〉 σε amec(0) amec(µ)

(GeV) (GeV) (MeV) (MeV) (MeV) (MeV) (MeV) (µ−1) (µ−1)

1 1.579 1.086 -60.94 1.93 -25.71 1.73 9.44 -0.0021 -0.0012

1 1.973 1.054 -58.39 1.91 -25.72 1.70 9.42 -0.0020 -0.0012

1 2.368 1.028 -57.93 1.89 -25.73 1.67 9.39 -0.0020 -0.0012

1 2.763 1.008 -58.30 1.87 -25.72 1.63 9.35 -0.0019 -0.0011

1 3.157 0.992 -59.00 1.85 -25.69 1.60 9.31 -0.0019 -0.0011
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5 1.579 1.809 -49,65 2.15 -29.21 1.96 10.72 -0.0023 -0.0013

5 1.973 1.457 -45.76 2.09 -28.54 1.97 10.53 -0.0023 -0.0013

5 2.368 1.288 -46.01 2.05 -28.14 1.94 10.38 -0.0023 -0.0013

5 2.763 1.194 -47.24 2.01 -27.83 1.89 10.24 -0.0022 -0.0013

5 3.157 1.134 -48.74 1.99 -27.57 1.84 10.11 -0.0022 -0.0013

10 1.973 2.223 -43.88 2.14 -29.99 2.03 11.03 -0.0024 -0.0014

10 2.368 1.558 -42.67 2.09 -29.35 2.02 10.83 -0.0024 -0.0014

10 2.763 1.344 -43.74 2.06 -28.85 1.97 10.63 -0.0023 -0.0013

10 3.157 1.233 -45.29 2.03 -28.46 1.92 10.46 -0.0023 -0.0013
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In table 1 we display our results for 〈Vπ〉 and 〈µ2 dVπ/dµ
2〉 as given by the the per-

turbative OPEP (pert) eqs. (45) and (46) and by the regularized OPEP (toy), eqs.(18)

mand (19). The first feature to be noted is that the sensitivity to the regularization of the

potential is much greater for 〈Vπ〉 than for 〈µ2 dVπ/dµ
2〉, due to the fact that the latter is

less influenced by the short distance components of the wave function. In the case of the

calculation based on the regularized potential, the large variations of the inner parameters

considerd change results only by a few percent. This suggests that the self consistency

between the potential and the wave function is important. In table 2 we present our

results for the case of the Argonne v14 [25] and super soft core C [26] potentials and the

values quoted also follow the pattern found in the case of the toy potential.

TABLE II. Deuteron expectation for Vπ and µ2dVπ/dµ2, for the perturbative (OPEP) and

regularized one-pion exchange potentials, eqs.(18, 19) and eqs.(45, 46), σε, eq.(12), amec(0),

eq.(39), amec(µ), eq.(40) and F exch
A (0), eq.(24), the MEC contribution to the electromagnetic

form factor, for the Argonne and SSC realistic interactions.

OPEP OPEP

potential 〈Vπ〉 〈µ2 dVπ
dµ2 〉 〈Vπ〉 〈µ2 dVπ

dµ2 〉 σε amec(0) amec(µ) F exch
A (0)

(MeV) (MeV) (MeV) (MeV) (MeV) (µ−1) (µ−1) (e2µ−1)

Argonne -33.63 1.80 -19.83 1.52 7.47 -0.0019 -0.0011 0.071

SSC -29.27 1.57 -14.94 1.48 5.96 -0.0019 -0.0011 0.057
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Inspection of these tables shows that the expectation values of the potential are about

ten times larger than those of its derivative. Taking this information into eq.(27), one

finds that this corresponds to an average pion momentum q = 3µ, which is relatively

high. The disturbance of the QCD vacuum due to the NN interaction, represented by

σε, has a central value of about 10 MeV, which is about five times the binding energy

and corresponds to about 10% of the total deuteron σ term. Our results have the same

magnitude but an opposite sign to that produced by Gammal and Frederico [27] in the

framework of the Skyrme model. The values of σε quoted in the tables are dominated

by the component involving the constant c in eq.(12). This in turn depends strongly on

dgA/dµ
2 which was calculated using chiral perturbation theory and contains an unknown

constant. Hence our result has to be taken as an estimate of the magnitude of σε.

The columns amec(0), eq.(39) and amec(µ), eq.(40), correspond respectively to the

quantities that have a relation to the condensate σε. The difference between amec(0)

and amec(µ) stems in part from the factor 3, related to the off-shell behaviour of the

intermediate pion-pion scattering amplitude, as discussed at the end of section IV. In the

case of soft pions, it is worth noting that 1
3
amec(0) ≈ −0.0007µ−1, in agreement with the

value found by Robilotta and Wilkin for physical pions [18]. The value for F exch
A (0), the

many body electromagnetic term of the commutator amplitude, is also displayed.

In summary, we have studied the many body effects of the quark condensate in the

deuteron through the Feynman-Hellmann theorem and found out that the part of the

deuteron sigma commutator associated with the NN interaction is smaller than the pion-

nucleon sigma-term, but five times larger than the binding energy. With the restricions

mentioned previously (br17 is not known), we find that σε could be dominated by the

derivative of the πN coupling constant. We have also linked the changes in the condensate

with meson exchange effects for probes that can couple to the pion field, namely Compton

and pion scatterings. As far as the possibility of extracting σε from the pion-deuteron

scattering length, our study has shown that meson exchange effects are comparable to

the present experimental error [28]. However the extrapolation to the soft limit produces

important changes which tend to blur the contribution of σε. The reason why the pion-
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deuteron scattering length is unexploitable is that the part of the exchange correction

which is linked to the sigma commutator is reduced by a factor 3 when one goes from soft

to physical pions, which makes it small. Moreover, in the last case, non static corrections

appear, in such a way that the extraction of the interesting term becomes unfeasible. In

the case of the Compton amplitude, instead, no such problem arises, since soft photons are

directly accessible to experiment, opening the the possibility of empirical determination.

The photons are by far a superior tool as a source of information on the quark condensate,

not only in the deuteron, but also in nuclei.
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Figure Captions

Fig.1 Seagull meson exchange diagram contributing to the Compton amplitude.

Fig.2. Diagrams contributing to the pion-deuteron scattering length in the pure pion-

nucleon sector; the crosses in the propagators of figs. 9 and 10 indicate that they refer to

antinucleons.

Fig.3. Diagrams contributing to the pion-deuteron scattering length due to the isospin-

symmetric amplitude represented by the black square.
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