146 research outputs found

    Search for Long-Lived Massive Charged Particles in 1.96 TeV \bar{p}p} Collisions

    Get PDF
    16 pages, 2 figures; Revision to fix PDF errors on some displays/printersWe performed a signature-based search for long-lived charged massive particles (CHAMPs) produced in 1.0 fb1\rm{fb}^{-1} of pˉp\bar{p}p collisions at s=1.96\sqrt{s}=1.96 TeV, collected with the CDF II detector using a high transverse-momentum (pTp_T) muon trigger. The search used time-of-flight to isolate slowly moving, high-pTp_T particles. One event passed our selection cuts with an expected background of 1.9±0.21.9 \pm 0.2 events. We set an upper bound on the production cross section, and, interpreting this result within the context of a stable scalar top quark model, set a lower limit on the particle mass of 249 GeV/c2c^2 at 95% C.L.We performed a signature-based search for long-lived charged massive particles produced in 1.0  fb-1 of pp̅ collisions at √s=1.96  TeV, collected with the CDF II detector using a high transverse-momentum (pT) muon trigger. The search used time of flight to isolate slowly moving, high-pT particles. One event passed our selection cuts with an expected background of 1.9±0.2 events. We set an upper bound on the production cross section and, interpreting this result within the context of a stable scalar top-quark model, set a lower limit on the particle mass of 249  GeV/c2 at 95% C.L.Peer reviewe

    Search for WW and WZ production in lepton plus jets final state at CDF

    Get PDF
    submitted to Phys. Rev. D (RC)We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in sqrt(s) = 1.96 TeV ppbar collisions at the Fermilab Tevatron, using data corresponding to 1.2 fb-1 of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of sigma_{WW}* BR(W->lnu,W->jets)+ sigma_{WZ}*BR(W->lnu,Z->jets)We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in √s=1.96  TeV pp̅ collisions at the Fermilab Tevatron, using data corresponding to 1.2  fb-1 of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of σWW×BR(W→ℓνℓ,W→jets)+σWZ×BR(W→ℓνℓ,Z→jets)<2.88  pb, which is consistent with the standard model next-to-leading-order cross section calculation for this decay channel of 2.09±0.12  pb.Peer reviewe

    A Search for the Higgs Boson Produced in Association with Z+Z\to \ell^+\ell^- Using the Matrix Element Method at CDF II

    Get PDF
    Submitted to Phys. Rev. DWe present a search for associated production of the standard model (SM) Higgs boson and a ZZ boson where the ZZ boson decays to two leptons and the Higgs decays to a pair of bb quarks in ppˉp\bar{p} collisions at the Fermilab Tevatron. We use event probabilities based on SM matrix elements to construct a likelihood function of the Higgs content of the data sample. In a CDF data sample corresponding to an integrated luminosity of 2.7 fb1^{-1} we see no evidence of a Higgs boson with a mass between 100 GeV/c2/c^2 and 150 GeV/c2/c^2. We set 95% confidence level (C.L.) upper limits on the cross-section for ZHZH production as a function of the Higgs boson mass mHm_H; the limit is 8.2 times the SM prediction at mH=115m_H = 115 GeV/c2/c^2.We present a search for associated production of the standard model Higgs boson and a Z boson where the Z boson decays to two leptons and the Higgs decays to a pair of b quarks in pp̅ collisions at the Fermilab Tevatron. We use event probabilities based on standard model matrix elements to construct a likelihood function of the Higgs content of the data sample. In a CDF data sample corresponding to an integrated luminosity of 2.7  fb-1 we see no evidence of a Higgs boson with a mass between 100  GeV/c2 and 150  GeV/c2. We set 95% confidence level upper limits on the cross section for ZH production as a function of the Higgs boson mass mH; the limit is 8.2 times the standard model prediction at mH=115  GeV/c2.Peer reviewe

    Measurement of Particle Production and Inclusive Differential Cross Sections in pbar{p} Collisions at sqrt{s}=1.96 TeV

    Get PDF
    21 pages, 10 figuresWe report a set of measurements of particle production in inelastic pbar{p} collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a Pythia prediction at the hadron level is performed. The inclusive charged particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.We report a set of measurements of particle production in inelastic pp̅ collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a pythia prediction at the hadron level is performed. The inclusive charged-particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.Peer reviewe

    Searching the Inclusive Lepton + Photon + Missing ET + b-quark Signature for Radiative Top Quark Decay and Non-Standard-Model Processes

    Get PDF
    8 pages, 6 figuresIn a search for new phenomena in a signature suppressed in the standard model of elementary particles (SM), we compare the inclusive production of events containing a lepton, a photon, significant transverse momentum imbalance (MET), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at 1.96 TeV corresponding to 1.9 fb-1 of integrated luminosity taken with the CDF detector at the Fermilab Tevatron. We find 28 lepton+photon+MET+b events versus an expectation of 31.0+4.1/-3.5 events. If we further require events to contain at least three jets and large total transverse energy, simulations predict that the largest SM source is top-quark pair production with an additional radiated photon, ttbar+photon. In the data we observe 16 ttbar+photon candidate events versus an expectation from SM sources of 11.2+2.3/-2.1. Assuming the difference between the observed number and the predicted non-top-quark total is due to SM top quark production, we estimate the ttg cross section to be 0.15 +- 0.08 pb.We compare the inclusive production of events containing a lepton (ℓ), a photon (γ), significant transverse momentum imbalance (E̸T), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at √s=1.96  TeV corresponding to 1.9  fb-1 of integrated luminosity taken with the CDF detector. We find 28 ℓγbE̸T events versus an expectation of 31.0-3.5+4.1 events. If we further require events to contain at least three jets and large total transverse energy, the largest SM source is radiative top-quark pair production, tt̅ +γ. In the data we observe 16 tt̅ γ candidate events versus an expectation from SM sources of 11.2-2.1+2.3. Assuming the difference between the observed number and the predicted non-top-quark total of 6.8-2.0+2.2 is due to SM top-quark production, we estimate the tt̅ γ cross section to be 0.15±0.08  pb.Peer reviewe

    Measurement of the b-Hadron Production Cross Section Using Decays to mu^- D^0 X Final States in ppbar Collisions at sqrt s = 1.96 TeV

    Get PDF
    We report a measurement of the production cross section for b hadrons in p-pbar collisions at sqrt{s}=1.96 TeV. Using a data sample derived from an integrated luminosity of 83 pb^-1 collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron, we analyze b hadrons, H_b, partially reconstructed in the semileptonic decay mode H_b -> mu^- D^0 X. Our measurement of the inclusive production cross section for b hadrons with transverse momentum p_T > 9 GeV/c and rapidity |y|We report a measurement of the production cross section for b hadrons in pp̅ collisions at √s=1.96  TeV. Using a data sample derived from an integrated luminosity of 83  pb-1 collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron, we analyze b hadrons, Hb, partially reconstructed in the semileptonic decay mode Hb→μ-D0X. Our measurement of the inclusive production cross section for b hadrons with transverse momentum pT>9  GeV/c and rapidity |y|<0.6 is σ=1.30  μb±0.05  μb(stat)±0.14  μb(syst)±0.07  μb(B), where the uncertainties are statistical, systematic, and from branching fractions, respectively. The differential cross sections dσ/dpT are found to be in good agreement with recent measurements of the Hb cross section and well described by fixed-order next-to-leading logarithm predictions.Peer reviewe

    Production of psi(2S) Mesons in ppbar Collisions at 1.96 TeV

    Get PDF
    submitted to Phys.Rev.D RCWe have measured the differential cross section for the inclusive production of psi(2S) mesons decaying to mu^{+} mu^{-1} that were produced in prompt or B-decay processes from ppbar collisions at 1.96 TeV. These measurements have been made using a data set from an integrated luminosity of 1.1 fb^{-1} collected by the CDF II detector at Fermilab. For events with transverse momentum p_{T} (psi(2S)) > 2 GeV/c and rapidity |y(psi(2S))| psi(2S)X) Br(psi(2S) -> mu^{+} mu^{-}) to be 3.29 +- 0.04(stat.) +- 0.32(syst.) nb.We have measured the differential cross section for the inclusive production of ψ(2S) mesons decaying to μ+μ- that were produced in prompt or B-decay processes from pp̅ collisions at 1.96 TeV. These measurements have been made using a data set from an integrated luminosity of 1.1  fb-1 collected by the CDF II detector at Fermilab. For events with transverse momentum pT(ψ(2S))>2  GeV/c and rapidity |y(ψ(2S))|<0.6 we measure the integrated inclusive cross section σ(pp̅ →ψ(2S)X)·Br(ψ(2S)→μ+μ-) to be 3.29±0.04(stat)±0.32(syst)  nb.Peer reviewe

    Precision Measurement of the X(3872) Mass in J/psi pi+ pi- Decays

    Get PDF
    We present an analysis of the mass of the X(3872) reconstructed via its decay to J/psi pi+ pi- using 2.4 fb^-1 of integrated luminosity from ppbar collisions at sqrt(s) = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. The possible existence of two nearby mass states is investigated. Within the limits of our experimental resolution the data are consistent with a single state, and having no evidence for two states we set upper limits on the mass difference between two hypothetical states for different assumed ratios of contributions to the observed peak. For equal contributions, the 95% confidence level upper limit on the mass difference is 3.6 MeV/c^2. Under the single-state model the X(3872) mass is measured to be 3871.61 +- 0.16 (stat) +- 0.19 (syst) MeV/c^2, which is the most precise determination to date.We present an analysis of the mass of the X(3872) reconstructed via its decay to J/ψπ+π- using 2.4  fb-1 of integrated luminosity from pp̅ collisions at √s=1.96  TeV, collected with the CDF II detector at the Fermilab Tevatron. The possible existence of two nearby mass states is investigated. Within the limits of our experimental resolution the data are consistent with a single state, and having no evidence for two states we set upper limits on the mass difference between two hypothetical states for different assumed ratios of contributions to the observed peak. For equal contributions, the 95% confidence level upper limit on the mass difference is 3.6  MeV/c2. Under the single-state model the X(3872) mass is measured to be 3871.61±0.16(stat)±0.19(syst)  MeV/c2, which is the most precise determination to date.Peer reviewe

    Observation of the Omega_b^- and Measurement of the Properties of the Xi_b^- and Omega_b^-

    Get PDF
    17 pages, 10 figuresWe report the observation of the bottom, doubly-strange baryon Omega^-_b through the decay chain Omega^-_b -> J/psi Omega^-, where J/psi -> mu^+ mu^-, Omega^- -> Lambda K^-, and Lambda -> p pi^-, using 4.2 fb^{-1} of data from p\bar p collisions at sqrt{s}=1.96 TeV, and recorded with the Collider Detector at Fermilab. A signal is observed whose probability of arising from a background fluctuation is 4.0 * 10^{-8}, or 5.5 Gaussian standard deviations. The Omega^-_b mass is measured to be 6054.4 +/- 6.8 (stat.) +/- 0.9 (syst.) MeV/c^2. The lifetime of the Omega^-_b baryon is measured to be 1.13^{+0.53}_{-0.40}(stat.) +/- 0.02(syst.)$ ps. In addition, for the \Xi^-_b baryon we measure a mass of 5790.9 +/- 2.6(stat.) +/- 0.8(syst.) MeV/c^2 and a lifetime of 1.56^{+0.27}_{-0.25}(stat.) +/-0.02(syst.) ps. Under the assumption that the \Xi_b^- and \Omega_b^- are produced with similar kinematic distributions to the \Lambda^0_b baryon, we find sigma(Xi_b^-) B(Xi_b^- -> J/psi Xi^-)}/ sigma(Lambda^0_b) B(Lambda^0_b -> J/psi Lambda)} = 0.167^{+0.037}_{-0.025}(stat.) +/-0.012(syst.) and sigma(Omega_b^-) B(Omega_b^- -> J/psi Omega^-)/ sigma(Lambda^0_b) B(Lambda^0_b -> J/psi Lambda)} = 0.045^{+0.017}_{-0.012}(stat.) +/- 0.004(syst.) for baryons produced with transverse momentum in the range of 6-20 GeV/c.We report the observation of the bottom, doubly-strange baryon Ωb- through the decay chain Ωb-→J/ψΩ-, where J/ψ→μ+μ-, Ω-→ΛK-, and Λ→pπ-, using 4.2  fb-1 of data from pp̅ collisions at √s=1.96  TeV, and recorded with the Collider Detector at Fermilab. A signal is observed whose probability of arising from a background fluctuation is 4.0×10-8, or 5.5 Gaussian standard deviations. The Ωb- mass is measured to be 6054.4±6.8(stat)±0.9(syst)  MeV/c2. The lifetime of the Ωb- baryon is measured to be 1.13-0.40+0.53(stat)±0.02(syst)  ps. In addition, for the Ξb- baryon we measure a mass of 5790.9±2.6(stat)±0.8(syst)  MeV/c2 and a lifetime of 1.56-0.25+0.27(stat)±0.02(syst)  ps. Under the assumption that the Ξb- and Ωb- are produced with similar kinematic distributions to the Λb0 baryon, we find σ(Ξb-)B(Ξb-→J/ψΞ-)/σ(Λb0)B(Λb0→J/ψΛ)=0.167-0.025+0.037(stat)±0.012(syst) and σ(Ωb-)B(Ωb-→J/ψΩ-)/σ(Λb0)B(Λb0→J/ψΛ)=0.045-0.012+0.017(stat)± 0.004(syst) for baryons produced with transverse momentum in the range of 6–20  GeV/c.Peer reviewe

    Measurement of ϒ production in pp collisions at √s = 2.76 TeV

    Get PDF
    The production of ϒ(1S), ϒ(2S) and ϒ(3S) mesons decaying into the dimuon final state is studied with the LHCb detector using a data sample corresponding to an integrated luminosity of 3.3 pb−1 collected in proton–proton collisions at a centre-of-mass energy of √s = 2.76 TeV. The differential production cross-sections times dimuon branching fractions are measured as functions of the ϒ transverse momentum and rapidity, over the ranges pT &#60; 15 GeV/c and 2.0 &#60; y &#60; 4.5. The total cross-sections in this kinematic region, assuming unpolarised production, are measured to be σ (pp → ϒ(1S)X) × B ϒ(1S)→μ+μ− = 1.111 ± 0.043 ± 0.044 nb, σ (pp → ϒ(2S)X) × B ϒ(2S)→μ+μ− = 0.264 ± 0.023 ± 0.011 nb, σ (pp → ϒ(3S)X) × B ϒ(3S)→μ+μ− = 0.159 ± 0.020 ± 0.007 nb, where the first uncertainty is statistical and the second systematic
    corecore