140 research outputs found

    Effect of the C-bridge length on the ultraviolet-resistance of oxycarbosilane low-k films

    Get PDF
    The ultra-violet (UV) and vacuum ultra-violet (VUV) resistance of bridging alkylene groups in organosilica films has been investigated. Similar to the Si-CH3 (methyl) bonds, the Si-CH2-Si (methylene) bonds are not affected by 5.6 eV irradiation. On the other hand, the concentration of the Si-CH2-CH2-Si (ethylene) groups decreases during such UV exposure. More significant difference in alkylene reduction is observed when the films are exposed to VUV (7.2 eV). The ethylene groups are depleted by more than 75% while only about 40% methylene and methyl groups loss is observed. The different sensitivity of bridging groups to VUV light should be taken into account during the development of curing and plasma etch processes of low-k materials based on periodic mesoporous organosilicas and oxycarbosilanes. The experimental results are qualitatively supported by ab-initio quantum-chemical calculations

    The prognostic value of the hypoxia markers CA IX and GLUT 1 and the cytokines VEGF and IL 6 in head and neck squamous cell carcinoma treated by radiotherapy ± chemotherapy

    Get PDF
    BACKGROUND: Several parameters of the tumor microenvironment, such as hypoxia, inflammation and angiogenesis, play a critical role in tumor aggressiveness and treatment response. A major question remains if these markers can be used to stratify patients to certain treatment protocols. The purpose of this study was to investigate the inter-relationship and the prognostic significance of several biological and clinicopathological parameters in patients with head and neck squamous cell carcinoma (HNSCC) treated by radiotherapy ± chemotherapy. METHODS: We used two subgroups of a retrospective series for which CT-determined tumoral perfusion correlated with local control. In the first subgroup (n = 67), immunohistochemistry for carbonic anhydrase IX (CA IX) and glucose transporter-1 (GLUT-1) was performed on the pretreatment tumor biopsy. In the second subgroup (n = 34), enzyme linked immunosorbent assay (ELISA) was used to determine pretreatment levels of the cytokines vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6) in serum. Correlation was investigated between tumoral perfusion and each of these biological markers, as well as between the markers mutually. The prognostic value of these microenvironmental parameters was also evaluated. RESULTS: For CA IX and GLUT-1, the combined assessment of patients with both markers expressed above the median showed an independent correlation with local control (p = 0.02) and disease-free survival (p = 0.04) with a trend for regional control (p = 0.06). In the second subgroup, IL-6 pretreatment serum level above the median was the only independent predictor of local control (p = 0.009), disease-free survival (p = 0.02) and overall survival (p = 0.005). CONCLUSION: To our knowledge, we are the first to report a link in HNSCC between IL-6 pretreatment serum levels and radioresistance in vivo. This link is supported by the strong prognostic association of pretreatment IL-6 with local control, known to be the most important parameter to judge radiotherapy responses. Furthermore, the combined assessment of CA IX and GLUT-1 correlated independently with prognosis. This is a valuable indication that a combined approach is important in the investigation of prognostic markers

    Catalyst preparation for CMOS-compatible silicon nanowire synthesis

    Get PDF
    Metallic contamination was key to the discovery of semiconductor nanowires, but today it stands in the way of their adoption by the semiconductor industry. This is because many of the metallic catalysts required for nanowire growth are not compatible with standard CMOS (complementary metal oxide semiconductor) fabrication processes. Nanowire synthesis with those metals which are CMOS compatible, such as aluminium and copper, necessitate temperatures higher than 450 C, which is the maximum temperature allowed in CMOS processing. Here, we demonstrate that the synthesis temperature of silicon nanowires using copper based catalysts is limited by catalyst preparation. We show that the appropriate catalyst can be produced by chemical means at temperatures as low as 400 C. This is achieved by oxidizing the catalyst precursor, contradicting the accepted wisdom that oxygen prevents metal-catalyzed nanowire growth. By simultaneously solving material compatibility and temperature issues, this catalyst synthesis could represent an important step towards real-world applications of semiconductor nanowires.Comment: Supplementary video can be downloaded on Nature Nanotechnology websit

    Applications of bismuth(iii) compounds in organic synthesis

    Full text link

    Mesure automatique des paramètres de bruit des MESFET hyperfréquences

    No full text
    International audienc

    A novel correction mechanism regulates nuclear position and ensures proper DNA segregation during late cytokinesis.

    No full text
    International audienc

    Automatic full noise characterization of microwave GaAs FETs

    No full text
    International audienc

    Comparative study of electrical properties of polyaniline films and polyaniline-polystyrene blends

    No full text
    In this paper, a simple model classically used to describe electrical behavior in conducting polymers can take into account transport properties in polyaniline doped with two different counter-ions and in polyaniline-polystyrene blends. Conduction is Maynly limited by hopping or tunneling between polaronic conducting clusters. When the structural disorder is less pronounced, a metallic contribution can occur near room temperature in series with the hopping/tunneling one. This heterogeneous picture used for unblended polyaniline can be applied to explain electrical blend properties above the percolation threshold when conduction occurs among completely connected polyaniline paths. Below the percolation threshold, the model has to take into account an additional contribution due to a hopping mechanism between large disconnected segments of polyaniline. It is shown that thermoelectric power reflects essentially the metallic behavior of the conducting clusters
    corecore