189 research outputs found

    Modified bacterial reaction centers

    Get PDF

    Low-frequency optical phonon modes and carrier mobility in the halide perovskite CH_3NH_3PbBr_3 using terahertz time-domain spectroscopy

    Get PDF
    As a light absorber in photovoltaic applications, hybrid organic-inorganic halide perovskites should have long and balanced diffusion lengths for both the separated electrons and holes before recombination, which necessitates high carrier mobility. In polar semiconductors, the room-temperature carrier mobility is often limited by the scattering between carriers and the lowest-frequency optical phonon modes. Using terahertz time-domain spectroscopy, we examine the temperature evolution of these phonon modes in CH_3NH_3PbBr_3 and obtained high carrier mobility values using Feynman's polaron theory. This method allows us to estimate the upper limit of carrier mobilities without the need to create photogenerated free carriers, and can be applied to other heteropolar semiconductor systems with large polarons

    Therapeutic and educational objectives in robot assisted play for children with autism

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas.Final Published versio

    ESR, ENDOR and TRIPLE resonance studies of the primary donor radical cation P960+ in the photosynthetic bacterium Rhodopseudomonas viridis

    Get PDF
    The light-induced radical cation of the primary electron donor P960+‱ in photosynthetic reaction centers from Rhodopseudomonas viridis has been investigated by ESR, ENDOR and TRIPLE techniques. Both the comparison with the cation radical of monomeric bacteriochlorophyll b (BChl b) and with molecular-orbital calculations performed on P960+‱ using the results of an X-ray structure analysis, consistently show an asymmetric distribution of the unpaired electron over the two BChl b molecules which constitute P960+‱. The possible relevance of this result for the primary electron transfer step in the reaction center is briefly discussed

    Climate Scenarios for Switzerland CH2018 – Approach and Implications

    Get PDF
    To make sound decisions in the face of climate change, government agencies, policymakers and private stakeholders require suitable climate information on local to regional scales. In Switzerland, the development of climate change scenarios is strongly linked to the climate adaptation strategy of the Confederation. The current climate scenarios for Switzerland CH2018 - released in form of six user-oriented products - were the result of an intensive collaboration between academia and administration under the umbrella of the National Centre for Climate Services (NCCS), accounting for user needs and stakeholder dialogues from the beginning. A rigorous scientific concept ensured consistency throughout the various analysis steps of the EURO-CORDEX projections and a common procedure on how to extract robust results and deal with associated uncertainties. The main results show that Switzerland’s climate will face dry summers, heavy precipitation, more hot days and snow-scarce winters. Approximately half of these changes could be alleviated by mid-century through strong global mitigation efforts. A comprehensive communication concept ensured that the results were rolled out and distilled in specific user-oriented communication measures to increase their uptake and to make them actionable. A narrative approach with four fictitious persons was used to communicate the key messages to the general public. Three years after the release, the climate scenarios have proven to be an indispensable information basis for users in climate adaptation and for downstream applications. Potential for extensions and updates has been identified since then and will shape the concept and planning of the next scenario generation in Switzerland

    Phonon features in terahertz photoconductivity spectra due to data analysis artifact: A case study on organometallic halide perovskites

    Get PDF
    We propose a simple scenario where the superimposed phonon modes on the photoconductive spectra are experimental artifacts due to the invalid formula used in data analysis. By use of experimental and simulated data of CH_3NH_3PbI_3 perovskites as a case study, we demonstrate that a correction term must be included in the approximated thin-film formula used in the literature; otherwise, parts of the spectra with high background permittivity near the phonon-mode resonances might interfere with the transient photoconductivity. The implication of this work is not limited to perovskites but other materials with strong vibrational modes within the THz spectral range

    Historical greenhouse gas concentrations for climate modelling (CMIP6)

    Get PDF
    Atmospheric greenhouse gas (GHG) concentrations are at unprecedented, record-high levels compared to the last 800 000 years. Those elevated GHG concentrations warm the planet and – partially offset by net cooling effects by aerosols – are largely responsible for the observed warming over the past 150 years. An accurate representation of GHG concentrations is hence important to understand and model recent climate change. So far, community efforts to create composite datasets of GHG concentrations with seasonal and latitudinal information have focused on marine boundary layer conditions and recent trends since the 1980s. Here, we provide consolidated datasets of historical atmospheric concentrations (mole fractions) of 43 GHGs to be used in the Climate Model Intercomparison Project – Phase 6 (CMIP6) experiments. The presented datasets are based on AGAGE and NOAA networks, firn and ice core data, and archived air data, and a large set of published studies. In contrast to previous intercomparisons, the new datasets are latitudinally resolved and include seasonality. We focus on the period 1850–2014 for historical CMIP6 runs, but data are also provided for the last 2000 years. We provide consolidated datasets in various spatiotemporal resolutions for carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), as well as 40 other GHGs, namely 17 ozone-depleting substances, 11 hydrofluorocarbons (HFCs), 9 perfluorocarbons (PFCs), sulfur hexafluoride (SF6), nitrogen trifluoride (NF3) and sulfuryl fluoride (SO2F2). In addition, we provide three equivalence species that aggregate concentrations of GHGs other than CO2, CH4 and N2O, weighted by their radiative forcing efficiencies. For the year 1850, which is used for pre-industrial control runs, we estimate annual global-mean surface concentrations of CO2 at 284.3 ppm, CH4 at 808.2 ppb and N2O at 273.0 ppb. The data are available at https://esgfnode.llnl.gov/search/input4mips/ and http://www.climatecollege.unimelb.edu.au/cmip6. While the minimum CMIP6 recommendation is to use the global- and annual-mean time series, modelling groups can also choose our monthly and latitudinally resolved concentrations, which imply a stronger radiative forcing in the Northern Hemisphere winter (due to the latitudinal gradient and seasonality)

    Dissolved noble gases and stable isotopes as tracers of preferential fluid flow along faults in the Lower Rhine Embayment, Germany

    Get PDF
    Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low ÎŽ2H and ÎŽ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7 × 10−4 cm3 (STP) g–1 ± 2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ∌107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying  that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids

    Low-frequency optical phonon modes and carrier mobility in the halide perovskite CH_3NH_3PbBr_3 using terahertz time-domain spectroscopy

    Get PDF
    As a light absorber in photovoltaic applications, hybrid organic-inorganic halide perovskites should have long and balanced diffusion lengths for both the separated electrons and holes before recombination, which necessitates high carrier mobility. In polar semiconductors, the room-temperature carrier mobility is often limited by the scattering between carriers and the lowest-frequency optical phonon modes. Using terahertz time-domain spectroscopy, we examine the temperature evolution of these phonon modes in CH_3NH_3PbBr_3 and obtained high carrier mobility values using Feynman's polaron theory. This method allows us to estimate the upper limit of carrier mobilities without the need to create photogenerated free carriers, and can be applied to other heteropolar semiconductor systems with large polarons
    • 

    corecore