146 research outputs found
Intensity Variations of H Alpha and N II 6 583 A Lines in the Night Sky Spectrum
Intensity variations of H alpha and N II 6 583 A lines in night sky spectru
Atomic step motion during the dewetting of ultra-thin films
We report on three key processes involving atomic step motion during the
dewetting of thin solid films: (i) the growth of an isolated island nucleated
far from a hole, (ii) the spreading of a monolayer rim, and (iii) the zipping
of a monolayer island along a straight dewetting front. Kinetic Monte Carlo
results are in good agreement with simple analytical models assuming
diffusion-limited dynamics.Comment: 7 pages, 5 figure
Elevated soluble Flt1 mediates an anti-angiogenic state in patients with ANCA-associated vasculitis
International audiencen.
Suppression of the near-infrared OH night sky lines with fibre Bragg gratings - first results
The background noise between 1 and 1.8 microns in ground-based instruments is
dominated by atmospheric emission from hydroxyl molecules. We have built and
commissioned a new instrument, GNOSIS, which suppresses 103 OH doublets between
1.47 - 1.7 microns by a factor of ~1000 with a resolving power of ~10,000. We
present the first results from the commissioning of GNOSIS using the IRIS2
spectrograph at the AAT. The combined throughput of the GNOSIS fore-optics,
grating unit and relay optics is ~36 per cent, but this could be improved to
~46 per cent with a more optimal design. We measure strong suppression of the
OH lines, confirming that OH suppression with fibre Bragg gratings will be a
powerful technology for low resolution spectroscopy. The integrated OH
suppressed background between 1.5 and 1.7 microns is reduced by a factor of 9
compared to a control spectrum using the same system without suppression. The
potential of low resolution OH suppressed spectroscopy is illustrated with
example observations.
The GNOSIS background is dominated by detector dark current below 1.67
microns and by thermal emission above 1.67 microns. After subtracting these we
detect an unidentified residual interline component of ~ 860 +/ 210
ph/s/m^2/micron/arcsec^2. This component is equally bright in the suppressed
and control spectra. We have investigated the possible source of the interline
component, but were unable to discriminate between a possible instrumental
artifact and intrinsic atmospheric emission. Resolving the source of this
emission is crucial for the design of fully optimised OH suppression
spectrographs. The next generation OH suppression spectrograph will be focussed
on resolving the source of the interline component, taking advantage of better
optimisation for a FBG feed. We quantify the necessary improvements for an
optimal OH suppressing fibre spectrograph design.Comment: Accepted for publication in MNRAS. 15 pages, 18 figure
M31N 2008-12a - the remarkable recurrent nova in M31: Pan-chromatic observations of the 2015 eruption
The Andromeda Galaxy recurrent nova M31N 2008-12a had been observed in eruption ten times, including yearly eruptions from 2008-2014. With a measured recurrence period of days (we believe the true value to be half of this) and a white dwarf very close to the Chandrasekhar limit, M31N 2008-12a has become the leading pre-explosion supernova type Ia progenitor candidate. Following multi-wavelength follow-up observations of the 2013 and 2014 eruptions, we initiated a campaign to ensure early detection of the predicted 2015 eruption, which triggered ambitious ground and space-based follow-up programs. In this paper we present the 2015 detection; visible to near-infrared photometry and visible spectroscopy; and ultraviolet and X-ray observations from the Swift observatory. The LCOGT 2m (Hawaii) discovered the 2015 eruption, estimated to have commenced at Aug. UT. The 2013-2015 eruptions are remarkably similar at all wavelengths. New early spectroscopic observations reveal short-lived emission from material with velocities km s, possibly collimated outflows. Photometric and spectroscopic observations of the eruption provide strong evidence supporting a red giant donor. An apparently stochastic variability during the early super-soft X-ray phase was comparable in amplitude and duration to past eruptions, but the 2013 and 2015 eruptions show evidence of a brief flux dip during this phase. The multi-eruption Swift/XRT spectra show tentative evidence of high-ionization emission lines above a high-temperature continuum. Following Henze et al. (2015a), the updated recurrence period based on all known eruptions is d, and we expect the next eruption of M31N 2008-12a to occur around mid-Sep. 2016
The genetic history of Scandinavia from the Roman Iron Age to the present
The authors acknowledge support from the National Genomics Infrastructure in Stockholm funded by Science for Life Laboratory, the Knut and Alice Wallenberg Foundation and the Swedish Research Council, and SNIC/Uppsala Multidisciplinary Center for Advanced Computational Science for assistance with massively parallel sequencing and access to the UPPMAX computational infrastructure. We used resources from projects SNIC 2022/23-132, SNIC 2022/22-117, SNIC 2022/23-163, SNIC 2022/22-299, and SNIC 2021-2-17. This research was supported by the Swedish Research Council project ID 2019-00849_VR and ATLAS (Riksbankens Jubileumsfond). Part of the modern dataset was supported by a research grant from Science Foundation Ireland (SFI), grant number 16/RC/3948, and co-funded under the European Regional Development Fund and by FutureNeuro industry partners.Peer reviewedPublisher PD
Sex Determination:Why So Many Ways of Doing It?
Sexual reproduction is an ancient feature of life on earth, and the familiar X and Y chromosomes in humans and other model species have led to the impression that sex determination mechanisms are old and conserved. In fact, males and females are determined by diverse mechanisms that evolve rapidly in many taxa. Yet this diversity in primary sex-determining signals is coupled with conserved molecular pathways that trigger male or female development. Conflicting selection on different parts of the genome and on the two sexes may drive many of these transitions, but few systems with rapid turnover of sex determination mechanisms have been rigorously studied. Here we survey our current understanding of how and why sex determination evolves in animals and plants and identify important gaps in our knowledge that present exciting research opportunities to characterize the evolutionary forces and molecular pathways underlying the evolution of sex determination
- …