Goddard Space Flight Center

Contract No NAS-5-12487-29it

$$
\not A 1 \mathrm{ST}-\mathrm{AP}-\mathrm{AE}-\mathrm{SPC}-10578 F N D
$$

IN THE NIGHT SKY SPECTRUM (

by
(Jean Dufy
Maurice Duffy Nguyen Huu-Doan 9
(FRANCE)

- $\quad C R-83561$
$\overline{15 \text { MARCH } 1967}$

INTENSITY VARIATIONS OF H_{α} AND [N II] 6583 A LINES
IN THE NIGHT SKY SPECTRUM

Comptes-Rendus de 1'Académie des Sciences
Astrophysique et Aéronomie

Note by Jean Dufay
Maurice Dufay
\& Nguyen Huu-Doan

Paris, 16 Aoat 1961.

SUMMARY

The strong intensity variations of the lines H_{α} and [N II] 6583 A in the spectrum of the night sky are often the result of passage of galactic regions H II in the field of spectrographs. The line H_{α}, emitted in the interplanetary space or, more probably, in the upper atmosphere, can be isolated only outside the Milky Way.

1. The study of intensity variations of the line H_{α} in the night sky spectrum was pursued at the Haute-Provence Observatory ($53^{\circ} 56^{\prime}$ N.1at., 23 E long.) with the aid of the grating spectrograph described in a preceding Note [1], the dispersion being $48 \mathrm{~A} / \mathrm{mm}$). A preliminary slight fogging of films Eastman lo3aE allowed us to abridge the exposures and to obtain a spectrum in a single night. We thus obtained 28 spectrograms during the moonless nights from 12 January to 17 July 1961, by aiming at 15° of the North horizon.

All show the fine H_{α} line between the rotation lines $P_{1}(3)$ and $P_{2}(4)$ of the band (6.1) of OH (Fig.1). Its intensity increased rather reglarly from January to March and passed through a maximum around the April newmoon (between 9 and 18 April). It then decreased more rapidly, seemingly having stabilized in June-July. On 16 and 18 April the photographic intensity of the line H_{α} had almost reached that of the line [0,I] 6364 A (Fig.1b).

Basing ourselves upon the absolute average intensities of the lines of the band (6.1) given by G. Kvifte [3], one may consider that at 15° of the horizon North the intensity of H_{α} roughly varied from 5 to nearly 20 Rayleighs. This is exactly the amplitude found under analogous conditions by V. S. Prokudina at Zvenigorod ($51^{\circ} 03$ ' Lat.N) [4]. R. X. Haynoullina and Z. V. Kariahina [5] have measured at Alma-Ata in December 1957 and January 1958 for H_{α} at 20° from the horizon intensities comprised between 4.1 and 6.4 Rayleighs.
(*) Sur les variations d'intensité des raies H_{α} and [N II] 6583 A dans le spectre du ciel nocturne.

The line [N II] 6583 A, visible on 15 of our negatives (January to May), is found to be enhanced simultaneously with the line H_{α}, as already noted by Kvifte [3] when he mentioned for the first time the presence of [N II] lines in the night sky spectrum. It is the sole radiation between 5500 and 6700 A of which the intensity seems to be related to that of the line H_{α}.

The covariance of the lines H_{α} and 6583 A naturally leads one to suspect the intervention of galactic regions H II, where the emission of forbidden lines of ionized nitrogen generally accompanies that of hydrogen lines [6]. Their role may be important by virtue of the rather limited field of our spectrograph. Taking account of the angular aperture of the collimator, directly aimed at the sky, and of the length of the horizontal slot, the useful region of the sky corresponds to an area of slightly more than 30 degrees-square (4.5° in height and about 7° in azimuth) and the regions H II of declinations between $58^{\circ} 45^{\prime}$ and $63^{\circ} 15^{\prime}$ may cross the field in a little more than one hour.

Had they been uniformly distributed, as an average, between two small circles parallel to the galactic plane, the intensity of H_{α} would be proportional to the duration of the passage of the zone considered in the field. The curves plotted by calculating for various epochs the duration of passage of the galactic zone comprised between the latitudes $+10^{\circ}$ and -10° (for example) resemble effectively to the curve representing the variations of H_{α} as a function of time: same gradual increase from January to April, same more rapid decrease afterward. The duration of the passage is maximum during the second fortnight of April.

The brillant and extended regions of H II likely to pass in the field are restricted in number. Reference is principally made to the group of nebulosities near N.G.C. 7635 ($\alpha \simeq 23 \mathrm{~h} 18 \mathrm{~m}$, $\delta \simeq+60^{\circ} 49^{\prime}, 196 \mathrm{I}$,), near I.C. 1805 ($\alpha=2 \mathrm{~h} 3 \mathrm{I} \mathrm{m}, \dot{\delta}=+61^{\circ}{ }^{\circ} \mathrm{o}^{\prime}$) and near I.C. $1848\left(\alpha=2 \mathrm{~h} 54 \mathrm{~m}, ~ \partial=+61^{\circ}{ }^{\circ} 8^{\prime}\right.$). The first group intervenes from January to the end of April, I.C. 1805 from February to the beginning of June, and I.C. 1848 from March till about 15 June. The duration of the passage is maximum for these regions in March-April.

We thus believe that the intensity variation of the line H_{α}, observed in the Haute-Provence in the spring of 1961, stems at least in greater part from the !assage of galactic regions H II. However, since the Milky Way no longer passes in the field in July, the line H_{α} observed during that time and of which the intensity is weak and little variable, must indeed be of atmospheric. geocoronal or interpanetary origin.
3. Our measurements of radial velocity on the line H_{α} seem to corroborate these conclusions despite their being of little precision. They seem significant when the line is strong. On 16 and 18 April we find -23 and $-18 \mathrm{~km} / \mathrm{sec}$. Taking into account the orbital velocity of the Earth at the epoch, the radial velocities measured by G. Courtès [7] by observing the interference rings of the line H_{α} lead to geocentric velocities $-37.2 \mathrm{~km} / \mathrm{sec}$ for I.C. 1805 and -19.5 $\mathrm{km} / \mathrm{sec}$ for i.c. 1848. In view of the degree of our measurement precision (of the order of $\pm 10 \mathrm{~km} / \mathrm{sec}$) , the agreement is rather satisfactory.

The less reliable measurements of February and July negatives give nearly zero radial velocities, as if the "terrestrial" phenomenon were then prevalent.

Fig. 1.
a) Spectrum of 12 Januaty 1961, exp. of 09 h .55 m . b) Spectrum of 18 April 1961, exp.of 06 h .45 m .
4. The discussion of Kvifte observations [3] makes still more clearly apparent the contribution of regions H II. Their exposures were made at As (Norway, latitude $59^{\circ} 40^{\prime} \mathrm{N}$), at various azimuths and heights, by projecting with the aid of a lens with short focal length the image of the sky on the vertical slot of the fixed spectrograph. The indications given by the author generally allow the identification of the galactic regions observed.

Brillant H II regions have passed in the field during all the exposures where the lines H_{α} and [N II] 6583 A are intense and, contrary to author's opinion, the important enhancements of the two lines localized at certain points of the image of the slot, correspond well to the nebulosities of Orion and Cygnus.

We undertook analogous observations by projecting the image of the sky on the slot of our spectrograph mounted on an equatorial table that follows the diurnal motion, with a lens having a very short focus. The first two spectra obtained by aiming near a Cygni (6 and 7 August 1961) show the lines H_{α} and 658.3 A localized near Nebula America. H_{α} is much stronger than the lines [0 I] 5577 and 6300 A , that extend uniformly over the entire length of the slot. The duration of exposures (4h.45') was not sufficient to make appear the line H_{α} outside the nebulosities, not anymore than the bands OH . The weakening of the "terrestrial" line near the zenith seems to be in favor of an atmospheric origin rather than interplanetary or even geocoronal of the line H_{α} observed near horizon, beyond the Milky Way. It is not known yet whether the lines of [N II] are present in the spectrum of night glow, outside the regions H II.

**** THE END *****

REFERENCES

[1]. M. DUFAY \& J. DUFAY. Comptes-Rendus, 250, 4191, 1960.
[2]. N.B. The presence of the Moon above horizon during part of exposure time has for effect to weaken the line H_{α}, which appears in absorption in lunar sky. The 1960 negatives, which do not show H_{α} in emission, have been influenced by a weak moonshine.
[3]. Geofysiske Publikajoner, Oslo, 20, No.12, 1959.
[4]. J. DUFAY. Draft Rpeort, Intern.Astronom.Union, 191, 1961.
[5]. Ac.of Sc. of Kazakhstan. Inform.of Astophysical Institute, 10, 52, 1960.
[6]. N.B. The presence of H on a night sky spectrum, of weak dispersion, taken down in 1949, was already attributed to H II regions of Cygnus (J.CABANNES, J. DUFAY \& M. DUFAY., C.R. $230,1233,1950$).
[7]. Ann. d'Astrophysique, 23, 115, 1960.

Contract No.NAS -5-12487 VOLT TECINICAL, CORPORATION 1145 19th St.NW
D.C. 20036 .

Te1: 223-6700; 223-4930.

Translated by ANDRE L. BRICHANT
on 15 March 1967.

DISTRIBUTTON

G.S.F.C.

100, 110, 400, 600, 601
610 (2)
611 VKB* + 6
612 (6)
613 (10)
614 (6)
615 (8)
640 HESS
O'KEEFE
NORTHROP
MEAD
MAEDA
HARRIS-HERRING
CAMERON
BURLEY-KELSALL READING ROOM
630 (3)
620 SPENCER
HANEL
621 TAYLOR
622 BANDEEN
252 LIBRARY
256 FREAS
LHN VOLT

NAS A HQS OTHER CENTERS
all SG SS
SL FELLOWS HIPSHER HOROWITZ BRUNK
SM FOSTER GILL
RR KURZWEG
RTR NEILL
USS (2)
WX SWEET

AMES R C
SONETT
LIBRARY
LANGLEY R C
116 KATZOFF
160 ADAMSON
235 SEATON
185 WEATHERWAX

JET PROP. LAB.
186-133 SS
183B-365 NEWBURN
111-127 LAWSON
Vis.Lab WYCKOFF
111-113 LIBRARY
U.MICH.

HADDOCK
MIT
BARRETT

+ all permanent addressees

