1,777 research outputs found

    Long-range spin-pairing order and spin defects in quantum spin-1/2 ladders

    Full text link
    For w-legged antiferromagnetic spin-1/2 Heisenberg ladders, a long-range spin-pairing order can be identified which enables the separation of the space spanned by finite-range (covalent) valence-bond configurations into w+1 subspaces. Since every subspace has an equivalent counter subspace connected by translational symmetry, twofold degeneracy, breaking traslational symmetry is found except for the subspace where the ground state of w=even belongs to. In terms of energy ordering, (non)degeneracy and the discontinuities introduced in the long-range spin-pairing order by topological spin defects, the differences between even and odd ladders are explained in a general and systematic way.Comment: 16 pages, 7 figures, 2 tables. To be publish in The European Physical J.

    Bosonic versus fermionic pairs of topological spin defects in monolayered high-T_c superconductors

    Get PDF
    The energy associated with bosonic and fermionic pairs of topological spin defects in doped antiferromagnetic quantum spin-1/2 square lattice is estimated within a resonating valence bond scenario, as described by a t-t'-J-like model Hamiltonian, plus a t-perpendicular, responsible of a three-dimensional screening of the electrostatic repulsion within the bosonic pairs. For parameters appropriate for monolayered high-T_c superconductors, both fermionic and bosonic pairs show x^2-y^2 symmetry. We find a critical value of doping such that the energy of the bosonic pairs goes below twice the energy of two fermionic pairs at their Fermi level. This finding could be related to the onset of high-T_c superconductivity.Comment: 10 pages, 6 figures. To be published in Phys. Rev.

    Insights into the Carbon chemistry of Mon R2

    Full text link
    Aiming to learn about the chemistry of the dense PDR around the ultracompact (UC) HII region in Mon R2, we have observed a series of mm-wavelength transitions of C3H2 and C2H. In addition, we have traced the distribution of other molecules, such as H13CO+, SiO, HCO, and HC3N. These data, together with the reactive ions recently detected, have been considered to determine the physical conditions and to model the PDR chemistry. We then identified two kind of molecules. The first group, formed by the reactive ions (CO+, HOC+) and small hydrocarbons (C2H, C3H2), traces the surface layers of the PDR and is presumably exposed to a high UV field (hence we called it as "high UV", or HUV). HUV species is expected to dominate for visual absorptions 2 < Av < 5 mag. A second group (less exposed to the UV field, and hence called "low UV", or LUV) includes HCO and SiO, and is mainly present at the edges of the PDR (Av > 5 mag). While the abundances of the HUV molecules can be explained by gas phase models, this is not the case for the studied LUV ones. Although some efficient gas-phase reactions might be lacking, grain chemistry sounds like a probable mechanism able to explain the observed enhancement of HCO and SiO. Within this scenario, the interaction of UV photons with grains produces an important effect on the molecular gas chemistry and constitutes the first evidence of an ionization front created by the UC HII region carving its host molecular cloud. The physical conditions and kinematics of the gas layer which surrounds the UC HII region were derived from the HUV molecules. Molecular hydrogen densities > 4 10^6 cm^(-3) are required to reproduce the observations. Such high densities suggest that the HII region could be pressure-confined by the surrounding high density molecular gas.Comment: 32 pages, 8 figures. Accepted by Astrophysical Journa

    Spin-Peierls vs Peierls distortions in a family of conjugated polymers

    Get PDF
    Distortions in a family of conjugated polymers are studied within two complementary approaches, i.e. within a many-body Valence Bond (VB) approach using a transfer matrix technique to treat the Heisenberg model of the systems, and also in terms of the tight-binding band-theoretic model with interactions limited to nearest neighbors. The computations indicate that both methods predict the presence or absence of the same distortions in most of the polymers studied.Comment: Latex209 (twocolumn revtex), 11 pages; 9 figures available by mail from authors; Phys. Rev. B (in press

    Knowledge is at the Edge! How to Search in Distributed Machine Learning Models

    Full text link
    With the advent of the Internet of Things and Industry 4.0 an enormous amount of data is produced at the edge of the network. Due to a lack of computing power, this data is currently send to the cloud where centralized machine learning models are trained to derive higher level knowledge. With the recent development of specialized machine learning hardware for mobile devices, a new era of distributed learning is about to begin that raises a new research question: How can we search in distributed machine learning models? Machine learning at the edge of the network has many benefits, such as low-latency inference and increased privacy. Such distributed machine learning models can also learn personalized for a human user, a specific context, or application scenario. As training data stays on the devices, control over possibly sensitive data is preserved as it is not shared with a third party. This new form of distributed learning leads to the partitioning of knowledge between many devices which makes access difficult. In this paper we tackle the problem of finding specific knowledge by forwarding a search request (query) to a device that can answer it best. To that end, we use a entropy based quality metric that takes the context of a query and the learning quality of a device into account. We show that our forwarding strategy can achieve over 95% accuracy in a urban mobility scenario where we use data from 30 000 people commuting in the city of Trento, Italy.Comment: Published in CoopIS 201

    Excited states of linear polyenes

    Full text link
    We present density matrix renormalisation group calculations of the Pariser- Parr-Pople-Peierls model of linear polyenes within the adiabatic approximation. We calculate the vertical and relaxed transition energies, and relaxed geometries for various excitations on long chains. The triplet (3Bu+) and even- parity singlet (2Ag+) states have a 2-soliton and 4-soliton form, respectively, both with large relaxation energies. The dipole-allowed (1Bu-) state forms an exciton-polaron and has a very small relaxation energy. The relaxed energy of the 2Ag+ state lies below that of the 1Bu- state. We observe an attraction between the soliton-antisoliton pairs in the 2Ag+ state. The calculated excitation energies agree well with the observed values for polyene oligomers; the agreement with polyacetylene thin films is less good, and we comment on the possible sources of the discrepencies. The photoinduced absorption is interpreted. The spin-spin correlation function shows that the unpaired spins coincide with the geometrical soliton positions. We study the roles of electron-electron interactions and electron-lattice coupling in determining the excitation energies and soliton structures. The electronic interactions play the key role in determining the ground state dimerisation and the excited state transition energies.Comment: LaTeX, 15 pages, 9 figure

    Identificación de flujos entre acuíferos a nivel regional en base a datos hidroquímicos (Alt Empordà, NE España)

    Get PDF
    A escala regional, los flujos de agua subterránea entre formaciones hidrogeológicas condicionan su ba lance hídrico y, con él, su régimen de explotación. En este estudio se caracteriza la dinámica hidrogeológica a nivel regional de la depresión del Alt Empordà (Girona, NE España) en base a datos hidroquímicos, con el objetivo de identificar flujos de agua subterránea entre las formaciones que constituyen la zona de recarga (relieves circundantes) y la depresión. En este sistema, el ión sulfato resulta un trazador adecuado para identificar los procesos hidroquímicos y de mezcla que acontecen en este zona. Los datos presentados sugieren que la presencia de sulfato, y por consiguiente la recarga, se debe a aportaciones de flujos profundos, en algunos casos desde las unidades geológicas inferiores, ajenos a la recarga local por precipitación desde la superficie.At a regional scale, groundwater flow between aquifer systems controls their water budget and, therefore, its exploitation regime. This study characterizes the hydrogeology at a regional level of the Alt Empordà Basin (Girona, NE Spain). Our goal consists in recognizing recharge flowpaths, based on hydrochemical data, between the aquifer systems located in the ranges (recharge) areas and these within the basin. Sulfate stands as an appropriate tracer to identify hydrochemical as well as mixing processes and, therefore, recharge relationships. Field data suggest that sulfate occurrence is related to deep groundwater fluxes unrelated to the local rainfall recharge.Universidad Nacional de La Plat

    Structural and Electronic Instabilities in Polyacenes: Density Matrix Renormalization Group Study of a Long--Range Interacting Model

    Get PDF
    We have carried out Density Matrix Renormalization Group (DMRG) calculations on the ground state of long polyacene oligomers within a Pariser-Parr-Pople (PPP) Hamiltonian. The PPP model includes long-range electron correlations which are required for physically realistic modeling of conjugated polymers. We have obtained the ground state energy as a function of the dimerization δ\delta and various correlation functions and structure factors for δ=0\delta=0. From energetics, we find that while the nature of the Peierls' instabilityin polyacene is conditional and strong electron correlations enhance the dimerization. The {\it cis} form of the distortion is favoured over the {\it trans} form. However, from the analysis of correlation functions and associated structure factors, we find that polyacene is not susceptible to the formation of a bond order wave (BOW), spin density wave (SDW) or a charge density wave (CDW) in the ground state.Comment: 31 pages, latex, 13 figure

    Spatially Resolved Chemistry in Nearby Galaxies I. The Center of IC 342

    Full text link
    We have imaged emission from the millimeter lines of eight molecules--C2H, C34S, N2H+, CH3OH, HNCO, HNC, HC3N, and SO--in the central half kpc of the nearby spiral galaxy IC 342. The 5" (~50 pc) resolution images were made with OVRO. Using these maps we obtain a picture of the chemistry within the nuclear region on the sizescales of individual GMCs. Bright emission is detected from all but SO. There are marked differences in morphology for the different molecules. A principal component analysis is performed to quantify similarities and differences among the images. This analysis reveals that while all molecules are to zeroth order correlated, that is, they are all found in dense molecular clouds, there are three distinct groups of molecules distinguished by the location of their emission within the nuclear region. N2H+, C18O, HNC and HCN are widespread and bright, good overall tracers of dense molecular gas. C2H and C34S, tracers of PDR chemistry, originate exclusively from the central 50-100 pc region, where radiation fields are high. The third group of molecules, CH3OH and HNCO, correlates well with the expected locations of bar-induced orbital shocks. The good correlation of HNCO with the established shock tracer molecule CH3OH is evidence that this molecule, whose chemistry has been uncertain, is indeed produced by processing of grains. HC3N is observed to correlate tightly with 3mm continuum emission, demonstrating that the young starbursts are the sites of the warmest and densest molecular gas. We compare our HNC images with the HCN images of Downes et al. (1992) to produce the first high resolution, extragalactic HCN/HNC map: the HNC/HCN ratio is near unity across the nucleus and the correlation of both of these gas tracers with the star formation is excellent. (Abridged).Comment: 54 pages including 10 figures and 8 tables. Accepted for publication in Ap
    corecore