We have imaged emission from the millimeter lines of eight molecules--C2H,
C34S, N2H+, CH3OH, HNCO, HNC, HC3N, and SO--in the central half kpc of the
nearby spiral galaxy IC 342. The 5" (~50 pc) resolution images were made with
OVRO. Using these maps we obtain a picture of the chemistry within the nuclear
region on the sizescales of individual GMCs. Bright emission is detected from
all but SO. There are marked differences in morphology for the different
molecules. A principal component analysis is performed to quantify similarities
and differences among the images. This analysis reveals that while all
molecules are to zeroth order correlated, that is, they are all found in dense
molecular clouds, there are three distinct groups of molecules distinguished by
the location of their emission within the nuclear region. N2H+, C18O, HNC and
HCN are widespread and bright, good overall tracers of dense molecular gas. C2H
and C34S, tracers of PDR chemistry, originate exclusively from the central
50-100 pc region, where radiation fields are high. The third group of
molecules, CH3OH and HNCO, correlates well with the expected locations of
bar-induced orbital shocks. The good correlation of HNCO with the established
shock tracer molecule CH3OH is evidence that this molecule, whose chemistry has
been uncertain, is indeed produced by processing of grains. HC3N is observed to
correlate tightly with 3mm continuum emission, demonstrating that the young
starbursts are the sites of the warmest and densest molecular gas. We compare
our HNC images with the HCN images of Downes et al. (1992) to produce the first
high resolution, extragalactic HCN/HNC map: the HNC/HCN ratio is near unity
across the nucleus and the correlation of both of these gas tracers with the
star formation is excellent. (Abridged).Comment: 54 pages including 10 figures and 8 tables. Accepted for publication
in Ap