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ABSTRACT

We have carried out Density Matrix Renormalization Group (DMRG) calculations on the

ground state of long polyacene oligomers within a Pariser–Parr–Pople (PPP) Hamilto-

nian. The PPP model includes long–range electron correlations which are required for

physically realistic modeling of conjugated polymers. We have obtained the ground state

energy as a function of the dimerizationδ and various correlation functions and structure

factors forδ = 0. From energetics, we find that while the nature of the Peierls’ instabil-

ity in polyacene is conditional and strong electron correlations enhance the dimerization.

Thecis form of the distortion is favoured over thetrans form. However, from the analy-

sis of correlation functions and associated structure factors, we find that polyacene is not

susceptible to the formation of a bond order wave (BOW), spindensity wave (SDW) or a

charge density wave (CDW) in the ground state.
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1 Introduction

The question whether an infinitely long linear polyene (polyacetylene, PA) would have

equal bond lengths or not has been debated ever since it was known that benzene has

equal bond lengths while 1,3,5–hexatriene has alternatingshort (double) and long (single)

bonds. Addressing this issue, Lennard–Jones [1] and Coulson [2] predicted a ground state

with uniform bond lengths. Later work by Labhart [3], Ooshika [4], Longuet–Higgins and

Salem [5] established that the ground state would have bond–alternation i.e. the infinite

polyene would have alternate long and short bonds. Experimentally, such a dimerization

would qualitatively explain the finite optical gap obtainedby extrapolation of optical data

for linear polyenes [6]. Earlier, Peierls established a more general result, known as the

Peierls’ instability or Peierls’ distortion [7] for a partially filled one–dimensional band.

Peierls’ demonstrated that lattice vibrations couple to electrons in the band leading to

the opening of a gap at the Fermi surface, making the materialinsulating. The Hückel

model solution of Longuet–Higgins and Salem pertain to the specific case of Peierls’

distortions in a half–filled extended system. Longuet–Higgins and Salem showed that

for an infinite polyene chain, the total electronic energy per carbon atom as a function of

the distortionδ in the chain, within a Hückel model [8] is proportional toδ2 ln |δ| [5].

The elastic strain energy of the system is proportional toδ2, the proportionality constant

depending directly on the lattice stiffness and inversely on the electron–phonon coupling

constant. The algebraic forms of the strain and electronic energies guarantee that the

gain in electronic energy always exceeds the strain energy and the ground state would

correspond to nonzeroδ. The distortion of the polyene chain is termed unconditional

as the distorted state is always more stable than the undistorted state for any value of the
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lattice stiffness and the electron–lattice coupling constant. In the last two to three decades,

a lot of interest has been generated by the possibility of solitonic and polaronic excitations

in polyacetylene (PA) following the work of Pople and Walmsley [9], and later by Rice

[10] and Su, Schrieffer and Heeger [11]. The latter work resulted in the Su–Schrieffer–

Heeger (SSH) model for polyacetylene.

All the work described above was done in the context of non–interacting quantum cell

models. However, real materials have interacting electrons and the importance of includ-

ing electron–electron interactions has been demonstratedwhile interpreting the ordering

of excited states in polyenes [12]. The correct ordering, namely the 21Ag state lying be-

low the optically allowed 11Bu state in long polyenes can be obtained only in a correlated

electronic model. The effect on dimerization in the ground state of polyacetylene in a

correlated model was unclear till the real–space, valence–bond (VB) study by Mazumdar

and Dixit [13] for Hubbard model and Soos and Ramasesha for PPP model [14]. While

mean–field and Hartree–Fock approaches predicted a decrease in dimerization, Mazum-

dar and Dixit found a clear enhancement, over a fairly large range of correlation strength

with a maximum dimerization aroundU ∼ 4t. In their study they employed a model

that included electron correlation at a minimal level, namely the Peierls’–Hubbard model.

This result was subsequently verified by quantum Monte Carlostudy by Hirsch [15],

variational calculation by Baeriswyl and Maki [16] and numerical renormalization group

study by Hayden and Mele [17]. Soos and Ramasesha [14] found asimilar result in case

of PPP model which includes extended range electron correlation. Thus it is now widely

believed that electron correlations enhance dimerizationin the Peierls–Hubbard model.

The Peierls’ instability is mainly a one–dimensional phenomena since only in one–
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dimension does the Peierls’ gap open along the full Fermi surface. In higher dimensions,

Peierls’ instability is not realized as easily as in one–dimension [7]. The effect of dimen-

sionality on the extent of instability has been studied within the frame work of energy

band theory, where it is held that the strength of the instability depends on the extent of

nesting of the Fermi surface. The effect of dimensionality on the instability, in going

from one–dimension to quasi one–dimension can be explored by studying coupled chain

(ladders) systems. The realm of quasi one–dimension is interesting as it provides for

interplay of strong quantum fluctuations as seen in one–dimension on the one hand and

possibility of charge or spin to order as seen in two–dimensions on the other. Historically,

ladders have been investigated within the Hubbard model mainly to explore instabilities

like pairing instability, charge and spin gaps [18], or charge ordering phenomenon [19].

The experimental realization of these systems are the two–legged SrCu2O3 and the three–

legged Sr2Cu3O5 ladder compounds [20] wherein the spin exchange or electrontransfers

are confined to a pair of parallel chains.

In the realm of conjugated polymers, polyacenes (Fig. 1a) can be viewed as ladders

with missing alternate rungs. These systems can be fairly easily realized experimentally.

Polyacene molecules with up to seven rings have already beensynthesized in the labora-

tory. Recently, polyacenes received a lot of attention whentetracene was used as the lasing

material to make the first electrically pumped organic laser[21]. It was also demonstrated

that one could make very high quality field–effect transistors (FETs) based on pentacene.

These devices display exotic behaviour like fractional quantum hall effect, superconduc-

tivity and electrical switching in the FET configuration [22]. Quantum chemists have

been interested in polyacenes for a very long time. Early studies on Peierls’ instability

in polyacenes were carried out by Salem and Longuet–Higginswithin the Hückel model
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[23]. They observed that unlike in the case of PA, instability in polyacene is conditional;

it depends on the lattice stiffness for a given electron–phonon coupling. In PA, the dis-

torted state is more stable than the undistorted state for any value of the force constant

and electron–phonon coupling. Salem and Longuet–Higgins considered thecis distorted

form (see Figs. 1b and 1c) while Boon [24] argued that thetrans form was the more

stable form of distortion. Subsequent studies by Whangbo, Woodward and Hoffmann

[25], and Tanakaet al. [26] added to this claim. Studies including electron correlations

were initially confined to the mean–field picture. Kivelson and Chapman [27] studied

bond alternation, magnetic ordering and possible superconductivity in polyacenes. In ad-

dition, there have been various other studies on the origin of the band gap, metal–insulator

transition and spin–Peierls’ distortions [28]. The antiferromagnetic spin–1/2 Heisenberg

system with nearest neighbour exchange corresponding to polyacene geometry has been

studied by Garcia–Bach, Valenti and Klein to explore the possibility of spin–Peierls’ in-

stability in the system [29].

Studies of Peierls’ instability using quantum cell models with explicit electron cor-

relations in the context of polyacenes have been very few andthese investigations have

employed only the Hubbard model. A modified Gutzwiller variational study by O’conner

and Watts–Tobins [30] reaffirmed the conditional nature of the instability. The instabil-

ity investigated by employing the Projector Quantum Monte Carlo technique (PQMC)

for finite oligomers of polyacenes concluded the same [31]. This study also found that

electron correlations enhance the susceptibility to distortion. Besides, for large interac-

tion strength, the undistorted polyacene was found to show atendency for formation of a

SDW ground state.
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Polyacenes, being semiconducting, the electron–electroninteractions are long ranged.

The QMC technique is difficult to implement for quantum cell models with long range

interactions. The Hubbard–Stratanovich transformation of each interaction term leads to

a bosonic variable in QMC. Thus, even for small quantum cell systems, the number of

bosonic variables become prohibitively large. Besides, the QMC method is also restricted

to intermediate correlation strengths. In our present study of instability in polyacene,

we have used a Pariser–Parr–Pople (PPP) model and have employed the Density Matrix

Renormalization Group (DMRG) method [32] to solve the model. The PPP model in-

cludes long–range coulomb interactions and appears unsuitable for a DMRG study as it

apparently spoils the quasi–one–dimensional topology of the system. However, our ear-

lier studies on PA has shown that the DMRG method is quite accurate for the PPP model

[35] and it appears that the DMRG method retains its accuracyif the long–range interac-

tion part is diagonal, as is indeed the case in the PPP model. In this paper we first review

the results obtained from a non–interacting model, then present our results and discussion

on polyacene and finally a summary of the results.

2 The non–interacting picture

The analysis by Salem and Longuet–Higgins [23] was based on aHückel model study of

polyacene. They considered an infinitely long chain of polyacene as made of two infi-

nite polyenes joined together by cross links (rungs), as shown in Fig. 1a. The molecular

orbitals (MOs) of each unit cell of polyacene may be classified as symmetric or antisym-

metric according to their symmetry with respect to reflection about the plane bisecting

the rung bonds, indicated in the figure by a dashed line. Thereare in all four bands,
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arising from the fourπ–MOs in each unit cell, two of each symmetry type as shown in

Fig. 2. In the undistorted form of polyacene, there is no bandgap between the occupied

and empty bands, while in both thecis andtransdistorted forms (Figs. 1b and 1c) there

is gap between the occupied and empty bands. In the undistorted case, since the lower

two bands are completely filled and the upper two bands are empty, we expect the system

to be insulating. However, the absence of a band gap between the filled lower band and

the empty higher band, due to accidental degeneracy, makes uniform polyacene a rather

unconventional metal. If a symmetrical distortion potential is imposed by way of a dimer-

ization one might expect this degeneracy to be lifted. However, the matrix element of the

perturbation between the symmetrical and antisymmetricalstates at the band edge vanish

by symmetry. Thus the case of polyacene, even in the noninteracting limit, is different

from PA and we cannot conclude if we will observe a dimerization of the chain. Salem

and Longuet–Higgins [23] conjectured that the polyacene would show only a conditional

instability.

Kivelson and Chapman [27], based on their study of polyaceneby a nearest–neighbour

tight binding model, argue that since the energy of the states near the Fermi energy is a

quadratic function of the wave vectork (rather than linear as in PA) the density of states

diverge near the Fermi energy, enhancing the possibility ofinstabilities in polyacene.

Their study arrives at the conclusion that there is no structural instability of the two kinds

depicted in Figs. 1a and 1b. They speculate on the possibility of a superconducting or

a magnetically ordered ground state. They however ignore electron–electron interactions

by considering them as ”probably weak”.
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3 The PPP model and Computational Scheme

The PPP model has been widely studied in the context of conjugated polymers and

molecules [36]. The PPP model Hamiltonian is given by,

ĤPPP = Ĥ0+ Ĥint. (1)

Ĥ0 =
2

∑
l=1

∑
i,σ

t0[1+ηl(−1)iδ](â†
i,lσâi+1,lσ +H.c.)+∑

i,σ
t0(â

†
2i−1,1σâ2i−1,2σ +H.c.),

Ĥint. = ∑
i

∑
l

Uil

2
n̂i,l(n̂i,l −1) + ∑

i, j
∑
l ,m

Vil , jm (n̂i,l −1)(n̂ j ,m−1) .

wherel ,m are the chain index, andi, j refer to sites on a chain, ˆa†
i,lσ (âi,lσ) creates (anni-

hilates) an electron of spinσ at sitei on chainl , t0 is the transfer integral, which alternates

betweent0(1 + δ) and t0(1 − δ) for adjacent bonds on the same chain,δ being the

dimensionless dimerization parameter,η1 = η2 = 1 if the dimerization of the top (l = 1)

chain is in phase with the dimerization of the bottom chain (l = 2) (cisconfiguration) and

η1 = 1,η2 = −1 if the dimerization of the top chain is out of phase with the dimerization

of the bottom chain (transconfiguration).Uil is the on–site Hubbard interaction andVil , jm

is the intersite Coulomb interaction, interpolated between Ui,l ande2/r, r −→ ∞, using

the Ohno interpolation scheme [37],

Vil , jm = 14.397

[

28.794
(Uil +U jm)2 + r2

il , jm

]− 1
2

, (2)

(the distances are in̊A and the energies in eV) widely used for conjugated polymers. In

all our computations, we have used the standard PPP parameters for carbon, which is

U = 11.26 eV,t0 = 2.4 eV for bond lengthr = 1.397Å which corresponds toδ = 0. In
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computing distances we have assumed that all bond angles are120◦ and that bond lengths

scale asr(1−δ) for a bond with transfer integralt = t0(1+δ).

The DMRG method, invented by White [32] is the most accurate numerical method

yet for calculating the ground and low–lying states of interacting quasi–one–dimensional

systems. In our application of this technique to polyaceneswithin the PPP model, there

are two crucial differences from all the earlier implementations of the technique for low–

dimensional systems. These are (i) the interaction part, although diagonal in the real space

representation, is truly long–ranged and (ii) the topologyof the system being constructed

does not have structures corresponding to oligomers of polyacene at every stage of the

DMRG iteration. Incorporating long–ranged interaction implies that we need to renor-

malize and store the matrices corresponding to the number operators of all the sites at

each iteration. While this is quite straightforward, it takes up large storage and for effi-

ciency of computations we have stored them in sparse form. Typically only about 5% of

the matrix elements of the site number operators are nonzero.

The nonlinear topology of polyacenes implies that we shouldfind an efficient and

accurate way of building the oligomers. We should avoid using cyclic boundary condi-

tions or long range transfer operators in building the final system. In Fig. 3 we show

schematically the way the polyacene oligomers are constructed in the DMRG scheme.

We begin with a ring of four sites and systematically add new sites in the middle of the

system building up the molecule in such a way that we avoid (i)long–range transfers be-

tween new and old sites and (ii) transfers between old sites that are far apart. We have

extensively checked this procedure by carrying out calculations on large oligomers in the

noninteracting limit and comparing them with exact numerical results.
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We have performed both infinite and finite DMRG calculations on polyacene chains

with up to 24 monomer units. We have done DMRG calculation with 128 density matrix

eigenvectors after making sure that the energies converge for this truncation, by calcu-

lating for a few oligomers with larger cut–offs. Besides, the ground state energy for

napthalene and anthracene obtained from DMRG with a cut–offof 128 compare very

well with model exact calculations in a Valence Bond (VB) basis [33, 34]. Symmetries

like conservation ofz–component of total spinSz and total number of electronNtot have

been exploited in our implementation. Since the left block–right block reflection symme-

try commonly seen in DMRG calculations is broken due to the bond alternation in each

chain, we have to store relevant operators for every site on both the left and right blocks.

This doubles the storage but can be easily handled as all the site operators are highly

sparse. Properties like expectation value of observables or correlation functions can be

evaluated with great accuracy after a few iterations of finite system DMRG algorithm.

4 Results and discussion

Our studies are divided into two parts: (1) study of the dependence of the energy of the

system onδ, and (2) study of susceptibility of the ground state to instabilities for δ = 0 as

seen from appropriate structure factors. We approach the question of Peierls’ distortion

first on the basis of energetics. We have calculated the totalenergy of the system as a

function of the system sizeN and dimerizationδ, up to a maximum system size of 24

monomer units forδ values ranging from 0.01 to 0.1 by employing the infinite system

DMRG algorithm. In Fig. 4 we show the dependence of the energyper unit cell on the

inverse system size, 1/N. We note that this dependence is linear in 1/N. In the case of the
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transpolyacene, oligomers with even and odd number of unit cells fall on two different

straight lines for largeδ. The smooth behaviour of the energy per unit cellversus1/N

gives confidence in extrapolation of the enegries to the thermodynamic limit.

In order to study the nature of the structural instability, if any, in the polyacenes, we

study the stabilization energy for the distorted structure, ∆EA(N,δ) = E(N,0) − EA(N,δ)

whereA = C or T corresponding tocis or trans form of polyacene, for variousδ and

number of rings,N in the polyacene. By definition, positive values of∆EA would indi-

cate that the distorted structure is stabilized. We obtain the stabilization energy in the

thermodynamic limit,∆EA(∞,δ), for each value ofδ from δ = 0.01 to 0.1 by extrapo-

lation of ∆EA(N,δ)/N versus1/N. In Fig. 5 we present the variation of∆EA(∞,δ) with

δ. Also shown for comparison are the Hückel results for this system. We note that the

stabilization of the dimerized state in the interacting system is larger than the stabilization

of the same in the noninteracting model for bothcisandtransdistortions. This shows that

dimerization is favoured in the interacting models more than in the noninteracting models,

just as in the case of polyenes. From the nature of the curve inFig. 5, the stabilization

energy appears to be quadratic inδ, for bothcis and trans form of polyacene. The plot

of ∆EA(∞,δ) vsδ2 shown in the inset, in fact shows that the stabilization is quadratic in

δ to a very good approximation. The quadratic form of the electronic stabilization of the

dimerization implies that the instability in polyacenes isindeed conditional for both the

cis and thetrans forms. This is in contrast to the unconditional dimerization seen in PA.

Furthermore, it is also seen that for the same distortionδ, thecis form is more susceptible

than thetransform to dimerization. Earlier work [31] within a Hubbard model also found

that thecis form is stabilized more than thetransform in the presence of electron–electron

interactions. The long range nature of interactions considered here does not seem to affect
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this result. Indeed, even the Hückel model also shows that thecis form is stabilized more

than thetransform.

To get a physical picture of the ground state, we have studiedmany different types of

correlation functions. In the context of a structural instability like the formation of a bond–

order wave (BOW), the bond–bond correlation function of theundistorted system gives

information about the type of BOW instability that may occurin the system. The Fourier

transform of the bond–bond correlation function, the bond structure factor, gives the am-

plitude for various BOW instabilities that may be present inthe ground state. Similarly,

the structure factors associated with charge–charge and spin–spin correlation functions

provide information on the susceptibility of the system towards CDW and SDW instabil-

ities. We have calculated bond–bond, spin–spin and charge–charge correlation functions

in the ground state for twenty four ring polyacene system which is the largest system size

that we have been able to study. A unit cell of polyacene has five bonds as shown in Fig.

6a; of these the bonds 1, 2, 4 and 5 are important to characterize a distortion as eithercis

or trans. It is possible to construct five different types of bond-bond correlation functions

with respect to a reference bond. From our view point, the important correlation func-

tions involve bond 1 with bonds 1 and 2 in each unit cell as wellas bond 1 with bonds 4

and 5 in each unit cell. The first type of correlation functionis useful in understanding if

the polyacenes indeed distort while the second type are useful in identifying the type of

distortion if it is present.

The bond–bond correlation function is defined as

< b̂i,l b̂ j ,l ′ > = < (∑
σ

â†
i,l σ âi+1,l σ +H.c.)( ∑

τ
â†

j ,l ′ τ â j+1,l ′ τ +H.c.) > , (3)

wherel , l ′ denote the chain. In the DMRG method, the expectation value of the product
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of two operators are very accurate, if they belong to different blocks. Thus, the bond-

bond correlations are calculated between the bond on one half with all the bonds on the

other half. The bond operator is itself a product of two operators in the same block.

We have computed the matrix of this product explicitly when it is first encountered and

have renormalized the product matrix thereafter. The correlation functions are calculated

for open polyacene chain. However, the resulting correlation function cannot be Fourier

transformed since the system is not strictly periodic. To overcome this difficulty, we have

assumed that the correlations involving the interior ringsare identical with those com-

puted for a periodic system (Fig. 6b). This is reasonable, ifwe neglect sites belonging

to the two rings at each of the ends. Then the correlations corresponding to the proper-

ties of the interior twenty rings are taken to be the same as those in a twenty ring system

with periodic boundary conditions. This allows obtaining structure factors from the cor-

responding correlation functions. To enhance the accuracyof our calculations, we have

carried outfinite DMRG calculations for the 24 ring polyacene system. We have kept

the DMRG cut–off at 150 density matrix eigenvectors and haveused four finite DMRG

sweeps.

We show the plot of bond-bond correlations for the bond in thebottom chain (shown

in bold in Fig. 6b) with all the chain bonds on the top and bottom left half of the system in

Figs. 7a and 7b. We note that except at the ends of the chain, the correlations are almost

identical. The bond-bond correlation shows a slight short range oscillation which dies off

rapidly. Eliminating the end bonds and imposing periodicity as discussed earlier, we have

obtained the structure factor corresponding to the bond-bond correlations. This is shown

in Fig. 8. We note that the structure factor has no peaks anywhere away fromq = 0. This

clearly implies that the system is not susceptible to any bond order wave. Since a single
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chain remains uniform, the question ofcis or trans type of distortion does not arise. We

have also confirmed that the bond-bond correlation for the rung bonds shows a similar

behaviour, implying that the rung bonds are uniform.

The spin–spin correlation functions,< sz
i,ls

z
j ,l ′ > and charge–charge correlation func-

tions,< ni,ln j ,l ′ > have also been computed to see if the system has a tendency forfor-

mation of either a SDW or CDW. According to Fig. 9a, there are four sites in a unit cell

of undistorted polyacene. We have calculated these correlations between the new right

site (Fig. 9b) and all the sites in the left block. The real space spin–spin correlations,

displayed in Figs. 10a and 10b show short range antiferromagnetic fluctuations expected

from a nondegenerate correlated model [38]. The spin–spin correlation decays exponen-

tially which is consistent with a spin gap in the system. The charge–charge correlations,

shown in Figs. 11a and 11b show very slight short range oscillation, extending over a

couple of sites. They also decay rapidly. The structure factors for spin–spin and charge–

charge correlations are shown in Figs. 12 and 13. They clearly show that the system

favours uniform charge distribution and no spin density oscillations. This rules out any

possibility of CDW or SDW ground state in polyacenes.

5 Summary

We have studied polyacenes up to 24 rings with long range coulomb interactions within

a PPP model, by the DMRG method. From energetics, we concludethat the structural

instability in polyacene is only conditional, unlike that in the case of PA. We find that the

cis form of distorted polyacene is more stable than thetrans form. This is contrary to

earlier predictions based on non–interacting models wherethe trans form was predicted
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to be more favourable. We have used the finite DMRG algorithm to calculate correlation

functions like bond–bond, spin–spin and charge–charge in the undistorted ground state.

Analysis of these correlation functions and their associated structure factors leads to the

conclusion that polyacene ground state does not have the tendency to show BOW, SDW

or CDW instability.
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Figure 1: Structure of polyacene. (a) Undistorted or uniform, (b) Cis distorted form, (c)
Trans distorted form.
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Figure 2: Dispersion of theπ–bands in polyacene for the three forms. Thecis andtrans
forms correspond to dimerization ofδ = 0.2.
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Figure 3: Inside-out scheme for building polyacene oligomers, adding two sites at a time
in the DMRG procedure, starting from a four site system. The primed sites correspond to
the right block and the unprimed sites correspond to the leftblock.
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Figure 4: Convergence of energy per unit cell for polyacene oligomers, in the DMRG
calculation, for (a) cis,δ = 0.01, (b) trans,δ = 0.01, (c) cis,δ = 0.1, (d) trans,
δ = 0.1.
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Figure 5: Stabilization energy for dimerization, as a function of δ, the distortion. Circles
and squares are for PPP and Hückel calculations and open andclosed symbols stand forcis
andtrans forms of polyacene respectively. The inset figure shows the linear dependence
of the stabilization energy when againstδ2.
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Figure 6: (a) Unitcell of polyacene showing the different bonds, (b) numbering of bonds
in polyacene chain. The new right bond indicated by a thick line is the reference bond for
bond-bond correlation. The new sites are indicated by filledsquares. The square brackets
indicate the part of the system over which periodic boundaryconditions are applied to
calculate bond structure factors.
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Figure 7: Bond–bond correlation as a function of the seperation between bonds, between
the bond shown in bold in Fig. 6b and the bonds in (a) the upper chain and (b) the lower
chain of the left block.
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Figure 8: Bond structure factor corresponding to the bond–bond correlations shown in
Fig. 7.
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Figure 9: (a) Unitcell of polyacene showing the different sites, (b) numbering of sites
in polyacene chain. The new sites are indicated by filled squares. The square brackets
indicate the part of the system over which periodic boundaryconditions are applied to
calculate spin and charge structure factors.
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Figure 10: Spin–spin correlation as a function of the seperation between the new site in
the right block and sites on (a) the upper chain and (b) the lower chain of the left block.
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Figure 11: Charge–charge correlation as a function of the seperation between the new site
in the right block and sites on (a) the upper chain and (b) the lower chain of the left block.
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Figure 12: Spin structure factor obtained from the spin–spin correlation function shown
in Fig. 10.
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Figure 13: Charge structure factor obtained from the charge–charge correlation function
shown in Fig. 11.
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