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ABSTRACT

We have carried out Density Matrix Renormalization Group@®G) calculations on the
ground state of long polyacene oligomers within a ParisamPople (PPP) Hamilto-
nian. The PPP model includes long—range electron comektivhich are required for
physically realistic modeling of conjugated polymers. Veédobtained the ground state
energy as a function of the dimerizatidrand various correlation functions and structure
factors ford = 0. From energetics, we find that while the nature of the PRigrtabil-
ity in polyacene is conditional and strong electron cotretes enhance the dimerization.
Thecis form of the distortion is favoured over thnsform. However, from the analy-
sis of correlation functions and associated structurefactve find that polyacene is not
susceptible to the formation of a bond order wave (BOW), simsity wave (SDW) or a
charge density wave (CDW) in the ground state.
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1 Introduction

The question whether an infinitely long linear polyene (pobtylene, PA) would have
equal bond lengths or not has been debated ever since it veagnkiinat benzene has
equal bond lengths while 1,3,5—hexatriene has alternating (double) and long (single)
bonds. Addressing this issue, Lennard—Jofjes [1] and Qo{#$predicted a ground state
with uniform bond lengths. Later work by Labhdrt [3], Oosh[l#], Longuet—Higgins and
Salem [b] established that the ground state would have l@ttration i.e. the infinite
polyene would have alternate long and short bonds. Expetatig, such a dimerization
would qualitatively explain the finite optical gap obtaifgdextrapolation of optical data
for linear polyenes[]6]. Earlier, Peierls established aengeneral result, known as the
Peierls’ instability or Peierls’ distortiorj][7] for a paatly filled one—dimensional band.
Peierls’ demonstrated that lattice vibrations couple txtebns in the band leading to
the opening of a gap at the Fermi surface, making the maiesalating. The Huckel
model solution of Longuet—Higgins and Salem pertain to {hecsic case of Peierls’
distortions in a half-filled extended system. Longuet-ltiggand Salem showed that
for an infinite polyene chain, the total electronic energygarbon atom as a function of
the distortiond in the chain, within a Hiickel modefl][8] is proportional 8 In |8| [H].
The elastic strain energy of the system is proportion@ftdhe proportionality constant
depending directly on the lattice stiffness and inverselyree electron—phonon coupling
constant. The algebraic forms of the strain and electronexg@es guarantee that the
gain in electronic energy always exceeds the strain energyttze ground state would
correspond to nonzerd. The distortion of the polyene chain is termed unconditiona

as the distorted state is always more stable than the ungidtstate for any value of the



lattice stiffness and the electron—lattice coupling canstin the last two to three decades,
a lot of interest has been generated by the possibility aisot and polaronic excitations
in polyacetylene (PA) following the work of Pople and Wales[9], and later by Rice
[LQ] and Su, Schrieffer and Heegér][11]. The latter work itestin the Su—Schrieffer—
Heeger (SSH) model for polyacetylene.

All the work described above was done in the context of naeratting quantum cell
models. However, real materials have interacting elesteord the importance of includ-
ing electron—electron interactions has been demonstvétéd interpreting the ordering
of excited states in polyenesJ12]. The correct orderinmeils the ’éAg state lying be-
low the optically allowed 1B, state in long polyenes can be obtained only in a correlated
electronic model. The effect on dimerization in the groutatesof polyacetylene in a
correlated model was unclear till the real-space, valdmed-(VB) study by Mazumdar
and Dixit [13] for Hubbard model and Soos and Ramasesha fBrir&del [I4]. While
mean—field and Hartree—Fock approaches predicted a dedredsnerization, Mazum-
dar and Dixit found a clear enhancement, over a fairly laggege of correlation strength
with a maximum dimerization around ~ 4t. In their study they employed a model
that included electron correlation at a minimal level, ngntlee Peierls’-Hubbard model.
This result was subsequently verified by quantum Monte Csildy by Hirsch [[Tj5],
variational calculation by Baeriswyl and Maki]16] and nuial renormalization group
study by Hayden and Mel¢[L7]. Soos and Ramas¢sha [14] fosidikar result in case
of PPP model which includes extended range electron ctioelarhus it is now widely

believed that electron correlations enhance dimerizatiadhe Peierls—Hubbard model.

The Peierls’ instability is mainly a one—dimensional phaeoa since only in one—



dimension does the Peierls’ gap open along the full Fernfasar In higher dimensions,
Peierls’ instability is not realized as easily as in one-gfision [}]. The effect of dimen-
sionality on the extent of instability has been studied inmitthe frame work of energy
band theory, where it is held that the strength of the inStalsiepends on the extent of
nesting of the Fermi surface. The effect of dimensionalitytiee instability, in going
from one—dimension to quasi one—dimension can be exploretidolying coupled chain
(ladders) systems. The realm of quasi one—dimension igestiag as it provides for
interplay of strong quantum fluctuations as seen in one-uéina on the one hand and
possibility of charge or spin to order as seen in two—dinmmson the other. Historically,
ladders have been investigated within the Hubbard modeatlgnt explore instabilities
like pairing instability, charge and spin gags][18], or deordering phenomenop J19].
The experimental realization of these systems are the eggeld SrCpO3 and the three—
legged SsCuzOs ladder compoundg [20] wherein the spin exchange or elettamisfers

are confined to a pair of parallel chains.

In the realm of conjugated polymers, polyacenes (Fig. 1a)oeaviewed as ladders
with missing alternate rungs. These systems can be faisifye@alized experimentally.
Polyacene molecules with up to seven rings have already $yaghesized in the labora-
tory. Recently, polyacenes received a lot of attention whlacene was used as the lasing
material to make the first electrically pumped organic |§&8}. It was also demonstrated
that one could make very high quality field—effect transs{EETS) based on pentacene.
These devices display exotic behaviour like fractionalruan hall effect, superconduc-
tivity and electrical switching in the FET configuratiop 22Quantum chemists have
been interested in polyacenes for a very long time. Earlgistuon Peierls’ instability

in polyacenes were carried out by Salem and Longuet—Higaitien the Hiickel model
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[E3]. They observed that unlike in the case of PA, instabititpolyacene is conditional;
it depends on the lattice stiffness for a given electronpinocoupling. In PA, the dis-
torted state is more stable than the undistorted state fporvalue of the force constant
and electron—phonon coupling. Salem and Longuet—Higginsidered theis distorted
form (see Figs. 1b and 1c) while Booh J24] argued thatttiaes form was the more
stable form of distortion. Subsequent studies by WhangboodWard and Hoffmann
[E3], and Tanakaet al. [2§] added to this claim. Studies including electron catiehs
were initially confined to the mean—field picture. KivelsamdaChapman[[27] studied
bond alternation, magnetic ordering and possible supdrgzivity in polyacenes. In ad-
dition, there have been various other studies on the origimedband gap, metal-insulator
transition and spin—Peierls’ distortior{s]28]. The antidenagnetic spin—1/2 Heisenberg
system with nearest neighbour exchange correspondingyagane geometry has been
studied by Garcia—Bach, Valenti and Klein to explore thesfimbty of spin—Peierls’ in-
stability in the system[]29].

Studies of Peierls’ instability using quantum cell modeighvexplicit electron cor-
relations in the context of polyacenes have been very fewtla@ge investigations have
employed only the Hubbard model. A modified Gutzwiller viidaal study by O’conner
and Watts—Tobing[30] reaffirmed the conditional naturehef instability. The instabil-
ity investigated by employing the Projector Quantum MontI€ technique (PQMC)
for finite oligomers of polyacenes concluded the samp [31is Btudy also found that
electron correlations enhance the susceptibility to disto. Besides, for large interac-
tion strength, the undistorted polyacene was found to shamd@ency for formation of a

SDW ground state.



Polyacenes, being semiconducting, the electron—elettteractions are long ranged.
The QMC technique is difficult to implement for quantum celbaels with long range
interactions. The Hubbard—-Stratanovich transformatiogach interaction term leads to
a bosonic variable in QMC. Thus, even for small quantum gatesns, the number of
bosonic variables become prohibitively large. Besides QMC method is also restricted
to intermediate correlation strengths. In our presentystfdinstability in polyacene,
we have used a Pariser—Parr—Pople (PPP) model and haveyechpthe Density Matrix
Renormalization Group (DMRG) methoff [32] to solve the modehe PPP model in-
cludes long-range coulomb interactions and appears aieiftor a DMRG study as it
apparently spoils the quasi—one—dimensional topologh®slistem. However, our ear-
lier studies on PA has shown that the DMRG method is quiteratetdior the PPP model
[BY] and it appears that the DMRG method retains its accufdhbg long—range interac-
tion part is diagonal, as is indeed the case in the PPP madtiid paper we first review
the results obtained from a non—interacting model, thesgoreour results and discussion

on polyacene and finally a summary of the results.

2 The non—interacting picture

The analysis by Salem and Longuet-Higging [23] was basedHiickel model study of

polyacene. They considered an infinitely long chain of podyee as made of two infi-
nite polyenes joined together by cross links (rungs), asvalio Fig. 1a. The molecular
orbitals (MOs) of each unit cell of polyacene may be classifie symmetric or antisym-
metric according to their symmetry with respect to reflactédout the plane bisecting

the rung bonds, indicated in the figure by a dashed line. Therean all four bands,



arising from the foure=MOs in each unit cell, two of each symmetry type as shown in
Fig. 2. In the undistorted form of polyacene, there is no bgeyl between the occupied
and empty bands, while in both tlees andtransdistorted forms (Figs. 1b and 1c) there
is gap between the occupied and empty bands. In the undigtoase, since the lower
two bands are completely filled and the upper two bands aréyeme expect the system
to be insulating. However, the absence of a band gap betwesiiled lower band and
the empty higher band, due to accidental degeneracy, makism polyacene a rather
unconventional metal. If a symmetrical distortion potahs imposed by way of a dimer-
ization one might expect this degeneracy to be lifted. H@uethe matrix element of the
perturbation between the symmetrical and antisymmetsieas at the band edge vanish
by symmetry. Thus the case of polyacene, even in the noattteg limit, is different
from PA and we cannot conclude if we will observe a dimer@aif the chain. Salem
and Longuet—Higging]23] conjectured that the polyacenelsvshow only a conditional
instability.

Kivelson and Chapmaf [R7], based on their study of polyabgreenearest—neighbour
tight binding model, argue that since the energy of the staéar the Fermi energy is a
guadratic function of the wave vecthi(rather than linear as in PA) the density of states
diverge near the Fermi energy, enhancing the possibilitinstabilities in polyacene.
Their study arrives at the conclusion that there is no stiratinstability of the two kinds
depicted in Figs. 1a and 1b. They speculate on the posgibilia superconducting or
a magnetically ordered ground state. They however igh@erein—electron interactions

by considering them as "probably weak”.



3 The PPP model and Computational Scheme

The PPP model has been widely studied in the context of catgdgpolymers and

molecules[[36]. The PPP model Hamiltonian is given by,

Hppp = Ho-+ Hint 1)
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wherel, mare the chain index, aridj refer to sites on a chaira]fl;y (& ,,) creates (anni-

]
a

hilates) an electron of spmat sitei on chainl, tg is the transfer integral, which alternates
betweenp(1 + d) and to(1 — d) for adjacent bonds on the same chabeing the
dimensionless dimerization parametgr,= n2 = 1 if the dimerization of the top & 1)
chain is in phase with the dimerization of the bottom chéir @) (cis configuration) and
N1 = 1,n2 = —1 if the dimerization of the top chain is out of phase with timaerization

of the bottom chaintansconfiguration) U; is the on-site Hubbard interaction avidjm

is the intersite Coulomb interaction, interpolated betweg ande?/r, r — o, using

the Ohno interpolation scheme[37],
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(the distances are iA and the energies in eV) widely used for conjugated polymkrs
all our computations, we have used the standard PPP paranfetecarbon, which is

U =1126 eV,tg = 2.4 eV for bond length = 1.397A which corresponds t6 = 0. In



computing distances we have assumed that all bond anglé2@rand that bond lengths

scale as(1— &) for a bond with transfer integral= to(1+ 9).

The DMRG method, invented by Whitg [32] is the most accuratmerical method
yet for calculating the ground and low-lying states of iat#ing quasi—one—dimensional
systems. In our application of this technique to polyacemésin the PPP model, there
are two crucial differences from all the earlier impleméiotas of the technique for low—
dimensional systems. These are (i) the interaction pénpagh diagonal in the real space
representation, is truly long—ranged and (ii) the topolofithe system being constructed
does not have structures corresponding to oligomers ofapelye at every stage of the
DMRG iteration. Incorporating long—ranged interactiorplias that we need to renor-
malize and store the matrices corresponding to the numbkenatigps of all the sites at
each iteration. While this is quite straightforward, itéakup large storage and for effi-
ciency of computations we have stored them in sparse formicdily only about 5% of

the matrix elements of the site number operators are nonzero

The nonlinear topology of polyacenes implies that we shdinld an efficient and
accurate way of building the oligomers. We should avoid gigiyclic boundary condi-
tions or long range transfer operators in building the finatem. In Fig. 3 we show
schematically the way the polyacene oligomers are cortstiia the DMRG scheme.
We begin with a ring of four sites and systematically add ngessn the middle of the
system building up the molecule in such a way that we avoilbigj—range transfers be-
tween new and old sites and (ii) transfers between old ditgsare far apart. We have
extensively checked this procedure by carrying out catmna on large oligomers in the

noninteracting limit and comparing them with exact numedriesults.



We have performed both infinite and finite DMRG calculationspolyacene chains
with up to 24 monomer units. We have done DMRG calculatiomdR8 density matrix
eigenvectors after making sure that the energies convergiis truncation, by calcu-
lating for a few oligomers with larger cut—offs. Besidese thround state energy for
napthalene and anthracene obtained from DMRG with a cutfof28 compare very
well with model exact calculations in a Valence Bond (VB)ibdB3,[3%#]. Symmetries
like conservation of—component of total spi6, and total number of electraN;o; have
been exploited in our implementation. Since the left blogit block reflection symme-
try commonly seen in DMRG calculations is broken due to thedoalternation in each
chain, we have to store relevant operators for every siteotimthe left and right blocks.
This doubles the storage but can be easily handled as alittheerators are highly
sparse. Properties like expectation value of observalslesroelation functions can be

evaluated with great accuracy after a few iterations ofdinjtstem DMRG algorithm.

4 Results and discussion

Our studies are divided into two parts: (1) study of the delpece of the energy of the
system ord, and (2) study of susceptibility of the ground state to inditges ford = 0 as
seen from appropriate structure factors. We approach thstigm of Peierls’ distortion
first on the basis of energetics. We have calculated the ¢oklgy of the system as a
function of the system sizB and dimerizatiord, up to a maximum system size of 24
monomer units fod values ranging from 0.01 to 0.1 by employing the infinite eyst
DMRG algorithm. In Fig. 4 we show the dependence of the enpagyunit cell on the

inverse system size/IN. We note that this dependence is linear fiN1In the case of the
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trans polyacene, oligomers with even and odd number of unit callsoh two different
straight lines for larg®. The smooth behaviour of the energy per unit eelisusl/N

gives confidence in extrapolation of the enegries to thertbdynamic limit.

In order to study the nature of the structural instabilitygny, in the polyacenes, we
study the stabilization energy for the distorted structiE(N,d) = E(N,0) — Ea(N,d)
whereA = C or T corresponding tais or transform of polyacene, for varioud and
number of ringsN in the polyacene. By definition, positive values&ia would indi-
cate that the distorted structure is stabilized. We obtaénstabilization energy in the
thermodynamic limitAEa (e, d), for each value ob from & = 0.01 to Q1 by extrapo-
lation of AEA(N,d)/N versusl/N. In Fig. 5 we present the variation AEa(,d) with
0. Also shown for comparison are the Huckel results for tgistesm. We note that the
stabilization of the dimerized state in the interactingeysis larger than the stabilization
of the same in the noninteracting model for boihandtransdistortions. This shows that
dimerization is favoured in the interacting models moretimehe noninteracting models,
just as in the case of polyenes. From the nature of the curtAgin5, the stabilization
energy appears to be quadraticdnfor both cis andtransform of polyacene. The plot
of AEa(%,8) vs&? shown in the inset, in fact shows that the stabilization iadyatic in
0 to a very good approximation. The quadratic form of the etett stabilization of the
dimerization implies that the instability in polyacenesndeed conditional for both the
cisand thetransforms. This is in contrast to the unconditional dimerizatgeen in PA.
Furthermore, it is also seen that for the same distofijdhecis form is more susceptible
than theransform to dimerization. Earlier wor[31] within a Hubbard melaélso found
that thecisform is stabilized more than theansform in the presence of electron—electron

interactions. The long range nature of interactions carsihere does not seem to affect
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this result. Indeed, even the Hiickel model also shows lteati$ form is stabilized more

than thetransform.

To get a physical picture of the ground state, we have studesdy different types of
correlation functions. In the context of a structural ity like the formation of a bond—
order wave (BOW), the bond—bond correlation function of tinéistorted system gives
information about the type of BOW instability that may ocauthe system. The Fourier
transform of the bond—bond correlation function, the bangicsure factor, gives the am-
plitude for various BOW instabilities that may be presentha ground state. Similarly,
the structure factors associated with charge—charge andsgpn correlation functions
provide information on the susceptibility of the system &osls CDW and SDW instabil-
ities. We have calculated bond—bond, spin—spin and chelngege correlation functions
in the ground state for twenty four ring polyacene systencivi the largest system size
that we have been able to study. A unit cell of polyacene hadfonds as shown in Fig.
6a; of these the bonds 1, 2, 4 and 5 are important to charaet@udistortion as eitheis
ortrans Itis possible to construct five different types of bond-th@orrelation functions
with respect to a reference bond. From our view point, theoirtgmt correlation func-
tions involve bond 1 with bonds 1 and 2 in each unit cell as aglbond 1 with bonds 4
and 5 in each unit cell. The first type of correlation functismiseful in understanding if
the polyacenes indeed distort while the second type arelusetientifying the type of

distortion if it is present.

The bond—bond correlation function is defined as
< 6i7| 6“/ > = < (Z 31T| o dit1l o+H.c)( Zé}r,l’ . éj+l7|/ +H.c) > | (3)
(o) T

wherel, |’ denote the chain. In the DMRG method, the expectation valtleeoproduct
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of two operators are very accurate, if they belong to difietdocks. Thus, the bond-
bond correlations are calculated between the bond on onevitalall the bonds on the
other half. The bond operator is itself a product of two ofm®in the same block.
We have computed the matrix of this product explicitly whers ifirst encountered and
have renormalized the product matrix thereafter. The tatiom functions are calculated
for open polyacene chain. However, the resulting cor@tefunction cannot be Fourier
transformed since the system is not strictly periodic. Teroeme this difficulty, we have
assumed that the correlations involving the interior riags identical with those com-
puted for a periodic system (Fig. 6b). This is reasonablejeifneglect sites belonging
to the two rings at each of the ends. Then the correlationgsponding to the proper-
ties of the interior twenty rings are taken to be the same @setin a twenty ring system
with periodic boundary conditions. This allows obtainirigisture factors from the cor-
responding correlation functions. To enhance the accushoyr calculations, we have
carried outfinite DMRG calculations for the 24 ring polyacene system. We haam k
the DMRG cut-off at 150 density matrix eigenvectors and hased four finite DMRG

sweeps.

We show the plot of bond-bond correlations for the bond intibgtom chain (shown
in bold in Fig. 6b) with all the chain bonds on the top and bwtteft half of the system in
Figs. 7a and 7b. We note that except at the ends of the chaicpthelations are almost
identical. The bond-bond correlation shows a slight sherge oscillation which dies off
rapidly. Eliminating the end bonds and imposing perioglias discussed earlier, we have
obtained the structure factor corresponding to the bomtmorrelations. This is shown
in Fig. 8. We note that the structure factor has no peaks aegawdawvay frong = 0. This

clearly implies that the system is not susceptible to anydbmder wave. Since a single
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chain remains uniform, the question@s or transtype of distortion does not arise. We
have also confirmed that the bond-bond correlation for timg faonds shows a similar

behaviour, implying that the rung bonds are uniform.

The spin—spin correlation functions,qflsil, > and charge—charge correlation func-
tions, < nmjnj - > have also been computed to see if the system has a tenderfoy-for
mation of either a SDW or CDW. According to Fig. 9a, there anerfsites in a unit cell
of undistorted polyacene. We have calculated these ctimetabetween the new right
site (Fig. 9b) and all the sites in the left block. The realcgpapin—spin correlations,
displayed in Figs. 10a and 10b show short range antiferraetagfluctuations expected
from a nondegenerate correlated modle] [38]. The spin—spiekation decays exponen-
tially which is consistent with a spin gap in the system. Tharge—charge correlations,
shown in Figs. 1l1la and 11b show very slight short range asiafi, extending over a
couple of sites. They also decay rapidly. The structureofadr spin—spin and charge—
charge correlations are shown in Figs. 12 and 13. They glstudw that the system
favours uniform charge distribution and no spin densityilzgons. This rules out any

possibility of CDW or SDW ground state in polyacenes.

S5 Summary

We have studied polyacenes up to 24 rings with long rangeooatulinteractions within
a PPP model, by the DMRG method. From energetics, we conthadehe structural
instability in polyacene is only conditional, unlike thatthe case of PA. We find that the
cis form of distorted polyacene is more stable than tila@s form. This is contrary to

earlier predictions based on non—interacting models wtiergrans form was predicted
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to be more favourable. We have used the finite DMRG algorithhcatculate correlation
functions like bond—bond, spin—spin and charge—chargkerundistorted ground state.
Analysis of these correlation functions and their assediatructure factors leads to the
conclusion that polyacene ground state does not have tderieyn to show BOW, SDW

or CDW instability.
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Figure 1: Structure of polyacene. (a) Undistorted or umifofb) Cis distorted form, (c)
Trans distorted form.
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Figure 2: Dispersion of the—bands in polyacene for the three forms. Tigandtrans
forms correspond to dimerization &f= 0.2.
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Figure 3: Inside-out scheme for building polyacene oligmnadding two sites at a time
in the DMRG procedure, starting from a four site system. Ti@@d sites correspond to
the right block and the unprimed sites correspond to theéblefttk.
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Figure 4: Convergence of energy per unit cell for polyaceligomers, in the DMRG
calculation, for (a) cisp = 0.01, (b) trans,d = 0.01, (c) cis,d = 0.1, (d) trans,
o = 0.1
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Figure 5: Stabilization energy for dimerization, as a fimcf 8, the distortion. Circles
and squares are for PPP and Huickel calculations and opercsed symbols stand fois
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of the stabilization energy when agaidét
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Figure 6: (a) Unitcell of polyacene showing the differenhlis, (b) numbering of bonds
in polyacene chain. The new right bond indicated by a thic& is the reference bond for
bond-bond correlation. The new sites are indicated by f8kpaares. The square brackets
indicate the part of the system over which periodic boundanyditions are applied to
calculate bond structure factors.
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Figure 7: Bond—bond correlation as a function of the seerdtetween bonds, between
the bond shown in bold in Fig. 6b and the bonds in (a) the uppaincand (b) the lower
chain of the left block.
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Figure 8: Bond structure factor corresponding to the bonddbcorrelations shown in
Fig. 7.
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Figure 9: (a) Unitcell of polyacene showing the differertesj (b) numbering of sites
in polyacene chain. The new sites are indicated by filled igualhe square brackets
indicate the part of the system over which periodic boundanyditions are applied to
calculate spin and charge structure factors.
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Figure 10: Spin—spin correlation as a function of the semerdetween the new site in
the right block and sites on (a) the upper chain and (b) thedahain of the left block.
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Figure 11: Charge—charge correlation as a function of thers¢ion between the new site
in the right block and sites on (a) the upper chain and (b)dtvef chain of the left block.
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Figure 12: Spin structure factor obtained from the spira-spirrelation function shown
in Fig. 10.
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Figure 13: Charge structure factor obtained from the changarge correlation function
shown in Fig. 11.
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