477 research outputs found

    Competitive Trace Theory: A Role for the Hippocampus in Contextual Interference during Retrieval.

    Get PDF
    Much controversy exists regarding the role of the hippocampus in retrieval. The two dominant and competing accounts have been the Standard Model of Systems Consolidation (SMSC) and Multiple Trace Theory (MTT), which specifically make opposing predictions as to the necessity of the hippocampus for retrieval of remote memories. Under SMSC, memories eventually become independent of the hippocampus as they become more reliant on cortical connectivity, and thus the hippocampus is not required for retrieval of remote memories, only recent ones. MTT on the other hand claims that the hippocampus is always required no matter the age of the memory. We argue that this dissociation may be too simplistic, and a continuum model may be better suited to address the role of the hippocampus in retrieval of remote memories. Such a model is presented here with the main function of the hippocampus during retrieval being "recontextualization," or the reconstruction of memory using overlapping traces. As memories get older, they are decontextualized due to competition among partially overlapping traces and become more semantic and reliant on neocortical storage. In this framework dubbed the Competitive Trace Theory (CTT), consolidation events that lead to the strengthening of memories enhance conceptual knowledge (semantic memory) at the expense of contextual details (episodic memory). As a result, remote memories are more likely to have a stronger semantic representation. At the same time, remote memories are also more likely to include illusory details. The CTT is a novel candidate model that may provide some resolution to the memory consolidation debate

    Effect of genistein and oestradiol on the adrenal cortex of the ovariectomised adult female albino rats

    Get PDF
    Background: Genistein, a naturally occurring soy isoflavone, attracts interest as an effective and safe alternative to hormone replacement therapy for menopausal problems. The aim of the current study was to compare between the effect of genistein and oestradiol on the adrenal cortex of the ovariectomised adult female albino rats. Materials and methods: Twenty rats were used in the current study and divided into four groups, 5 rats in each group; group 1 (control non-ovariectomised), group 2 (ovariectomised), group 3 (ovariectomised + genistein) and group 4 (ovariectomised + oestradiol). The rats were sacrificed after 4 weeks. Both adrenal glands were removed for light microscope using haematoxylin and eosin stain, ultrastructural study and immunohistochemical examination using proliferating cell nuclear antigen, caspase-3, and oestrogen receptor-b. Results: Ovariectomised rats showed signs of degeneration in all zones of adrenal cortex. On the other hand, treatment with genistein showed restoration of the adrenal cortex with less proliferative effect than oestradiol. Conclusions: So, genistein can be used as effective therapy to decrease the symptoms of menopause without fear of cancer development

    Therapeutic role of bone marrow mesenchymal stem cells in diabetic neuronal alternations of rat hippocampus

    Get PDF
    Background: As the hippocampus is the main brain region for many forms of learning and memory functions and is acutely sensitive to blood glucose changes, diabetes mellitus, which is a serious metabolic disease, is often accompanied by learning and memory deficits. Through scientific literatures, mesenchymal stem cells (MSCs) promote functional recovery in rats with traumatic brain injury, so the present work was conducted to study MSCs as a possible treatment for the diabetic neuronal degeneration and functional impairment of rat hippocampus. Materials and methods: It was carried out using male albino rats: non-diabetic control groups (4, 8, 12 weeks) (n = 15), diabetic groups by i.v. injection of streptozotocin for (4, 8, 12 weeks) (n = 15) and MSCs treatment to diabetic groups for (8, 12 weeks) (n = 10). Hippocampal learning and memory functions were assessed by the Morris Water Maze test and its results were statistically analysed. The rat hippocampal regions (CA1 and CA3) were subjected to histological, ultrastructural examination and morphometrical analyse of pyramidal neurons. Results: Neurons of the diabetic groups showed disturbed function and architecture; shrunken hyperchromatic nuclei and vacuolated eosinophilic cytoplasm (apoptotic changes) also MSCs treatment improved hippocampal learning and memory functions plus its architectural changes; increasing populations and normal regular distribution. Conclusions: It can be concluded that diabetic hippocampal neuronal alternations and functional impairment can be ameliorated by MSCs treatment

    Students’ perception of the position of ethics within an organisation

    Get PDF
    Abstract: This study examines the perceptions that senior business management students have towards the position of ethics within organisations in Johannesburg in relation to the availability of formal ethics programmes, ethical culture, ethical leadership and ethical value systems. Research Design & Methods: The study employed a quantitative survey design to collect data, using selfadministered questionnaires from the respondents. The data were then analysed using descriptive statistics. Reliability statistics were employed to test the reliability of each construct. Findings: The findings of this study showed that senior students have a positive perception of the ethical position of Conclusion: There is evidence of positive attitudes towards the ethical conduct of organisations. However, some evidence shows that some organisations consider results first and ethics later, despite the availability of ethical codes, value systems, and ethical leadership and culture

    Aberrant Maturation of the Uncinate Fasciculus Follows Exposure to Unpredictable Patterns of Maternal Signals

    Get PDF
    Across species, unpredictable patterns of maternal behavior are emerging as novel predictors of aberrant cognitive and emotional outcomes later in life. In animal models, exposure to unpredictable patterns of maternal behavior alters brain circuit maturation and cognitive and emotional outcomes. However, whether exposure to such signals in humans alters the development of brain pathways is unknown. In mother–child dyads, we tested the hypothesis that exposure to more unpredictable maternal signals in infancy is associated with aberrant maturation of corticolimbic pathways. We focused on the uncinate fasciculus, the primary fiber bundle connecting the amygdala to the orbitofrontal cortex and a key component of the medial temporal lobe–prefrontal cortex circuit. Infant exposure to unpredictable maternal sensory signals was assessed at 6 and 12 months. Using high angular resolution diffusion imaging, we quantified the integrity of the uncinate fasciculus using generalized fractional anisotropy (GFA). Higher maternal unpredictability during infancy presaged greater uncinate fasciculus GFA in children 9–11 years of age (n = 69, 29 female). In contrast to the uncinate, GFA of a second corticolimbic projection, the hippocampal cingulum, was not associated with maternal unpredictability. Addressing the overall functional significance of the uncinate and cingulum relationships, we found that the resulting imbalance of medial temporal lobe–prefrontal cortex connectivity partially mediated the association between unpredictable maternal sensory signals and impaired episodic memory function. These results suggest that unbalanced maturation of corticolimbic circuits is a mechanism by which early unpredictable sensory signals may impact cognition later in life

    The impact of ageing reveals distinct roles for human dentate gyrus and CA3 in pattern separation and object recognition memory

    Get PDF
    © 2017 The Author(s). Both recognition of familiar objects and pattern separation, a process that orthogonalises overlapping events, are critical for effective memory. Evidence is emerging that human pattern separation requires dentate gyrus. Dentate gyrus is intimately connected to CA3 where, in animals, an autoassociative network enables recall of complete memories to underpin object/event recognition. Despite huge motivation to treat age-related human memory disorders, interaction between human CA3 and dentate subfields is difficult to investigate due to small size and proximity. We tested the hypothesis that human dentate gyrus is critical for pattern separation, whereas, CA3 underpins identical object recognition. Using 3 T MR hippocampal subfield volumetry combined with a behavioural pattern separation task, we demonstrate that dentate gyrus volume predicts accuracy and response time during behavioural pattern separation whereas CA3 predicts performance in object recognition memory. Critically, human dentate gyrus volume decreases with age whereas CA3 volume is age-independent. Further, decreased dentate gyrus volume, and no other subfield volume, mediates adverse effects of aging on memory. Thus, we demonstrate distinct roles for CA3 and dentate gyrus in human memory and uncover the variegated effects of human ageing across hippocampal regions. Accurate pinpointing of focal memory-related deficits will allow future targeted treatment for memory loss

    Cortical pattern separation and item-specific memory encoding

    Get PDF
    Pattern separation and pattern completion are fundamental brain processes thought to be critical for episodic memory encoding and retrieval, and for discrimination between similar memories. These processes are best understood in the hippocampus, but are proposed to occur throughout the brain, in particular in sensory regions. Cortical, as well as hippocampal, pattern separation may therefore support formation of event-unique memory traces. Using fMRI, we investigated cortical pattern separation and pattern completion and their relationship to encoding activity predicting subsequent item-specific compared to gist memory. During scanning, participants viewed images of novel objects, repeated objects, and objects which were both perceptually and conceptually similar to previously presented images, while performing a size judgement task. In a later surprise recognition test, they judged whether test items were ‘same’ ‘similar’ or ‘new’ relative to studied items. Activity consistent with pattern separation – responses to similar items as if novel – was observed in bilateral occipito-temporal cortex. Activity consistent with pattern completion – responses to similar items as if repeated – was observed in left prefrontal cortex and hippocampus. Curve fitting analysis further revealed that graded responses to change in image conceptual and perceptual similarity in bilateral prefrontal and right parietal regions met specific computational predictions for pattern separation for one or both of these similarity dimensions. Functional overlap between encoding activity predicting subsequent item-specific recognition and pattern separation activity was also observed in left occipital cortex and bilateral inferior frontal cortex. The findings suggest that extrahippocampal regions including sensory and prefrontal cortex contribute to pattern separation and pattern completion of visual input, consistent with the proposal that cortical pattern separation contributes to formation of item-specific memory traces, facilitating accurate recognition memory

    Dopamine and memory dedifferentiation in aging.

    Get PDF
    The dedifferentiation theory of aging proposes that a reduction in the specificity of neural representations causes declines in complex cognition as people get older, and may reflect a reduction in dopaminergic signaling. The present pharmacological fMRI study investigated episodic memory-related dedifferentiation in young and older adults, and its relation to dopaminergic function, using a randomized placebo-controlled double-blind crossover design with the agonist Bromocriptine (1.25mg) and the antagonist Sulpiride (400mg). We used multi-voxel pattern analysis to measure memory specificity: the degree to which distributed patterns of activity distinguishing two different task contexts during an encoding phase are reinstated during memory retrieval. As predicted, memory specificity was reduced in older adults in prefrontal cortex and in hippocampus, consistent with an impact of neural dedifferentiation on episodic memory representations. There was also a linear age-dependent dopaminergic modulation of memory specificity in hippocampus reflecting a relative boost to memory specificity on Bromocriptine in older adults whose memory was poorer at baseline, and a relative boost on Sulpiride in older better performers, compared to the young. This differed from generalized effects of both agents on task specificity in the encoding phase. The results demonstrate a link between aging, dopaminergic function and dedifferentiation in the hippocampus.This research was funded mainly by a Fellowship to AMM from Research into Ageing, UK, and by an RCUK Academic Fellowship at the University of Edinburgh. Some of the research was conducted by Hunar Abdulrahman as part of a dissertation for the MSc in Neurosciences at the University of Edinburgh. The research was also supported by a Human Brain Project grant from the National Institute of Mental Health and the National Institute of Biomedical Imaging & Bioengineering. PCF was supported by a Wellcome Trust Senior Fellowship in Clinical Science, and by the Bernard Wolfe Health Neuroscience Fund. ETB is a part-time (50%) employee and shareholder of GSK. AMM is a member of the University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross-council Lifelong Health and Wellbeing Initiative, Grant number G0700704/84698.This is the accepted manuscript. The final version is available at http://dx.doi.org/10.1016/j.neuroimage.2015.03.03
    • …
    corecore