149 research outputs found

    R & D of prototype iTOF-MRPC at CEE

    Full text link
    The cooling storage ring (CSR) external-target experiment (CEE) is a spectrometer running at the Heavy Ion Research Facility (HIRFL) at Lanzhou. The CEE is the first large-scale nuclear physics experimental device by China to operate in the fixed-target mode with an energy of 1 GeV. The purpose of the CEE is to study the properties of dense nuclear matter. CEE uses a multi-gap resistive plate chamber (MRPC) as its internal time-of-flight (iTOF) detector for the identification of final-state particles. An iTOF-MRPC prototype with 24 gaps was designed to meet the requirements of CEE, and the readout electronics of the prototype use the FPGA-based time digitization technology. Using cosmic ray tests, the time resolution of the iTOF prototype was found to be approximately 30 ps. In order to further understand how to improve the time resolution of MRPC, ANSYS HFSS was used to simulate the signal transmission process in MRPC. The main factors affecting the timing performance of the MRPC and, accordingly, the optimization scheme are presented.Comment: 11 pages,9 figure

    Aging Skin: Nourishing from the Inside Out, Effects of Good Versus Poor Nitrogen Intake on Skin Health and Healing

    Get PDF
    Skin is the outermost defense organ which protects us from the environment, constituting around 8 % of an adult’s body weight. Healthy skin contains one-eighth of the body’s total proteins. The balance of turnover and synthesis of skin proteins is primarily dependent on the availability of sufficient nitrogen-containing substrates, namely, amino acids, essential for protein metabolism in any other tissue and body organs. The turnover of skin proteins has been shown to be rapid, and the mobilization of amino acids at the expense of skin proteins is relevant in experimental models of protein malnutrition. As a result, alterations in nutritional status should be suspected, diagnosed, and eventually treated for any skin lesions. Protein malnutrition has a dramatic prevalence in patients aged >70 or more, independent of the reason for hospitalization. The quality of nutrition and content of essential amino acids are strictly connected to skin health and integrity of its protein components. Collagen fiber deposition is highly and rapidly influenced by alterations in the essential to nonessential amino acid ratios. The most relevant nutritional factor of skin health is the prevalence of essential amino acids

    Aging Skin: Nourishing from Out-In. Lessons from Wound Healing

    Get PDF
    Skin lesion therapy, peculiarly in the elderly, cannot be isolated from understanding that the skin is an important organ consisting of different tissues. Furthermore, dermis health is fundamental for epidermis integrity, and so adequate nourishment is mandatory in maintaining skin integrity. The dermis nourishes the epidermis, and a healthy epidermis protects the dermis from the environment, so nourishing the dermis through the epidermal barrier is a technical problem yet to be resolved. This is also a consequence of the laws and regulations restricting cosmetics, which cannot have properties that pass the epidermal layer. There is higher investment in cosmetics than in the pharmaceutical industry dealing with skin therapies, because the costs of drug registration are enormous and the field is unprofitable. Still, wound healing may be seen as an opportunity to “feed” the dermis directly. It could also verify whether providing substrates could promote efficient healing and test optimal skin integrity maintenance, if not skin rejuvenation, in an ever aging population

    Study of e+e−→ppˉe^+e^- \rightarrow p\bar{p} in the vicinity of ψ(3770)\psi(3770)

    Full text link
    Using 2917 pb−1\rm{pb}^{-1} of data accumulated at 3.773~GeV\rm{GeV}, 44.5~pb−1\rm{pb}^{-1} of data accumulated at 3.65~GeV\rm{GeV} and data accumulated during a ψ(3770)\psi(3770) line-shape scan with the BESIII detector, the reaction e+e−→ppˉe^+e^-\rightarrow p\bar{p} is studied considering a possible interference between resonant and continuum amplitudes. The cross section of e+e−→ψ(3770)→ppˉe^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}, σ(e+e−→ψ(3770)→ppˉ)\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}), is found to have two solutions, determined to be (0.059±0.032±0.0120.059\pm0.032\pm0.012) pb with the phase angle ϕ=(255.8±37.9±4.8)∘\phi = (255.8\pm37.9\pm4.8)^\circ (<<0.11 pb at the 90% confidence level), or σ(e+e−→ψ(3770)→ppˉ)=(2.57±0.12±0.12\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}) = (2.57\pm0.12\pm0.12) pb with ϕ=(266.9±6.1±0.9)∘\phi = (266.9\pm6.1\pm0.9)^\circ both of which agree with a destructive interference. Using the obtained cross section of ψ(3770)→ppˉ\psi(3770)\rightarrow p\bar{p}, the cross section of ppˉ→ψ(3770)p\bar{p}\rightarrow \psi(3770), which is useful information for the future PANDA experiment, is estimated to be either (9.8±5.79.8\pm5.7) nb (<17.2<17.2 nb at 90% C.L.) or (425.6±42.9)(425.6\pm42.9) nb

    Modelling Z → ττ processes in ATLAS with τ-embedded Z → ΌΌ data

    Get PDF
    This paper describes the concept, technical realisation and validation of a largely data-driven method to model events with Z→ττ decays. In Z→ΌΌ events selected from proton-proton collision data recorded at √s=8 TeV with the ATLAS experiment at the LHC in 2012, the Z decay muons are replaced by τ leptons from simulated Z→ττ decays at the level of reconstructed tracks and calorimeter cells. The τ lepton kinematics are derived from the kinematics of the original muons. Thus, only the well-understood decays of the Z boson and τ leptons as well as the detector response to the τ decay products are obtained from simulation. All other aspects of the event, such as the Z boson and jet kinematics as well as effects from multiple interactions, are given by the actual data. This so-called τ-embedding method is particularly relevant for Higgs boson searches and analyses in ττ final states, where Zarrowττ decays constitute a large irreducible background that cannot be obtained directly from data control samples. In this paper, the relevant concepts are discussed based on the implementation used in the ATLAS Standard Model H→ττ analysis of the full datataset recorded during 2011 and 2012

    Effect of nanoscale curvature sign and bundle structure on supercritical H2 and CH4 adsorptivity of single wall carbon nanotube

    Get PDF
    The adsorptivities of supercritical CH(4) and H(2) of the external and internal tube walls of single wall carbon nanotube (SWCNT) were determined. The internal tube wall of the negative curvature showed the higher adsorptivities for supercritical CH(4) and H(2) than the external tube wall of the positive curvature due to their interaction potential difference. Fine SWCNT bundles were prepared by the capillary force-aided drying treatment using toluene or methanol in order to produce the interstitial pore spaces having the strongest interaction potential for CH(4) or H(2); the bundled SWCNT showed the highest adsorptivity for supercritical CH(4) and H(2). It was clearly shown that these nanostructures of SWCNTs are crucial for supercritical gas adsorptivity.ArticleADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY. 17(3):643-651 (2011)journal articl

    Optimal operating strategy of short turning lines for the battery electric bus system

    No full text
    202203 bcwhVersion of RecordSelf-fundedPublishe
    • 

    corecore