353 research outputs found

    Serving performance in a suprapostural visual signal detection task: context-dependent and direction-specific control of body sway with fingertip light touch

    Get PDF
    Keeping gaze fixed on a target during visual smooth pursuit or touch light during fingertip contact while standing may resemble the goals of a suprapostural task with the implicit demands to minimize self-imposed sensorimotor variability. To test whether the principle of a suprapostural task generalizes to more complex sensorimotor stimulus-response mappings, we investigated how the control of body sway is influenced by an implicit feedback coupling (IFC) between the variability of touch forces at the contact point and perceptual difficulty, that is vertical jitter of a horizontally oscillating Landolt-C, in a visual signal detection task (VSDT). Mediolateral (ML) body sway of ten young healthy adults was assessed in four IFC conditions: (1) LT with independent jitter (LT-IJ), (2) LT with jitter depending on LT contact force (LT-CF), (3) LT with jitter depending on body sway (LT-BS), and (4) no contact with jitter depending on body sway (NT-BS). We assumed that the postural control system would be responsive to IFC and therefore reduce body sway in both IFC conditions. Resulting mediolateral body sway differed between the IFC conditions. Reduced sway was found in LT-CF and LT-BS compared to LT-IJ and in LT-BS compared to NT-BS. Our results demonstrate that processes controlling body sway can reduce postural variability below a variability level achieved by LT augmentation of body sway-related feedback alone. Both direct (LT-CF) and indirect (LT-BS) IFC involvement of fingertip contact minimized sway, which implies that no hierarchy existed for whole body sway or precision of fingertip contact (integration of both control processes) or that they can be reversed flexibly (one facilitating the other) if it serves the implicit goal of reduced perceptual noise and enhanced performance within the context of our suprapostural VSDT

    Are serial CA 19-9 kinetics helpful in predicting survival in patients with advanced or metastatic pancreatic cancer treated with gemcitabine and cisplatin?

    Get PDF
    Background: Serial kinetics of serum CA 19-9 levels have been reported to reflect response and survival in patients with pancreatic cancer undergoing surgery, radiotherapy, and chemotherapy. We prospectively studied serial kinetics of serum CA 19-9 levels of patients with locally advanced or metastatic disease treated with gemcitabine and cisplatin. Patients and Methods: Enrolled in the study were 87 patients (female/male = 26/61; stage III/IV disease = 24/63). Patients received gemcitabine 1,000 mg/m(2) on days 1, 8, and 15 plus cisplatin 50 mg/m(2) on days 1 and 15, every 4 weeks. Serum samples were collected at the onset of chemotherapy and before the start of a new treatment cycle (day 28). Results: 77 of 87 patients (88.5%) with initially elevated CA 19-9 levels were included for evaluation. According to imaging criteria, 4 (5.2%) achieved a complete remission and 11 (14.3%) achieved partial remission, yielding an overall response rate of 19.5%. 43 (55.8%) patients were CA 19-9 responders, defined by greater than or equal to50% decrease in CA 19-9 serum levels within 2 months after treatment initiation. Except for one, all patients who had responded by imaging criteria (n = 14) fulfilled the criterion of a CA 19-9 responder. Despite being characterized as non-responders by CT-imaging criteria (stable/progressive disease), 29 patients were classified as CA 19-9 responders (positive predictive value 32.5%). Independent of the response evaluation by CT, CA 19-9 responders survived significantly longer than CA 19-9 non-responders (295 d; 95% CI: 285-445 vs. 174 d; 95% CI: 134-198; p = 0.022). Conclusion: CA 19-9 kinetics in serum serve as an early and reliable indicator of response and help to predict survival in patients with advanced pancreatic cancer receiving effective treatment with gemcitabine and cisplatin

    Eye Movements Affect Postural Control in Young and Older Females

    Get PDF
    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions

    Postural instability in an immersive Virtual Reality adapts with repetition and includes directional and gender specific effects

    Get PDF
    The ability to handle sensory conflicts and use the most appropriate sensory information is vital for successful recovery of human postural control after injury. The objective was to determine if virtual reality (VR) could provide a vehicle for sensory training, and determine the temporal and spatial nature of such adaptive changes. Twenty healthy subjects participated in the study (10 females). The subjects watched a 90-second VR simulation of railroad (rollercoaster) motion in mountainous terrain during five repeated simulations, while standing on a force platform that recorded their stability. The immediate response to watching the VR movie was an increased level of postural instability. Repeatedly watching the same VR movie significantly reduced both the anteroposterior (62%, p < 0.001) and lateral (47%, p = 0.001) energy used. However, females adapted more slowly to the VR stimuli as reflected by higher use of total (p = 0.007), low frequency (p = 0.027) and high frequency (p = 0.026) energy. Healthy subjects can significantly adapt to a multidirectional, provocative, visual environment after 4–5 repeated sessions of VR. Consequently, VR technology might be an effective tool for rehabilitation involving visual desensitisation. However, some females may require more training sessions to achieve effects with VR

    Driven Rydberg atoms reveal quartic level repulsion

    Full text link
    The dynamics of Rydberg states of a hydrogen atom subject simultaneously to uniform static electric field and two microwave fields with commensurate frequencies is considered in the range of small fields amplitudes. In the certain range of the parameters of the system the classical secular motion of the electronic ellipse reveals chaotic behavior. Quantum mechanically, when the fine structure of the atom is taken into account, the energy level statistics obey predictions appropriate for the symplectic Gaussian random matrix ensemble.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Stress-induced impairment in goal-directed instrumental behaviour is moderated by baseline working memory

    Get PDF
    Acute stress has been found to impair goal-directed instrumental behaviour, a cognitively flexible behaviour that requires cognitive control. The current study aimed to investigate the role of individual differences in baseline and stress-induced changes in working memory (WM) on the shift to less goal-directed responding under stress. To this end, 112 healthy participants performed an instrumental learning task. In phase 1, participants learned instrumental actions that were associated with two different food rewards. In phase 2, one of these food rewards was devalued by eating until satiety. Before the extinction test in phase 3, participants were subjected to the Maastricht Acute Stress Test or a no-stress control procedure. Results showed that the effect of stress on instrumental behaviour is modulated by baseline, but not stress-induced changes in WM capacity. Specifically, only at low baseline WM capacity did stress induce a shift to less goal-directed behaviour. These findings highlight that our cognitive resources are limited and for those who already have limited resources at baseline taking into account motivational value is impaired under stress. [Abstract copyright: Copyright © 2019. Published by Elsevier Inc.

    Wavefunction statistics in open chaotic billiards

    Full text link
    We study the statistical properties of wavefunctions in a chaotic billiard that is opened up to the outside world. Upon increasing the openings, the billiard wavefunctions cross over from real to complex. Each wavefunction is characterized by a phase rigidity, which is itself a fluctuating quantity. We calculate the probability distribution of the phase rigidity and discuss how phase rigidity fluctuations cause long-range correlations of intensity and current density. We also find that phase rigidities for wavefunctions with different incoming wave boundary conditions are statistically correlated.Comment: 4 pages, RevTeX; 1 figur
    • …
    corecore