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Abstract (word count: 282) 

Keeping gaze fixed on a target during visual smooth pursuit or touch light during fingertip contact 

while standing may resemble the goals of a suprapostural task with the implicit demands to minimize 

self-imposed sensorimotor variability. To test whether the principle of a suprapostural task 

generalizes to more complex sensorimotor stimulus-response mappings, we investigated how the 

control of body sway is influenced by an implicit feedback coupling (IFC) between the variability of 

touch forces at the contact point and perceptual difficulty, that is vertical jitter of a horizontally 

oscillating Landolt-C, in a visual signal detection task (VSDT). Mediolateral (ML) body sway of ten 

young healthy adults was assessed in four IFC conditions: (1) LT with independent jitter (LT-IJ), (2) LT 

with jitter depending on LT contact force (LT-CF), (3) LT with jitter depending on body sway (LT-BS), 

and (4) no contact with jitter depending on body sway (NT-BS). We assumed that the postural control 

system would be responsive to IFC and therefore reduce body sway in all IFC conditions. Resulting 

mediolateral body sway differed between the IFC conditions. Reduced sway was found in LT-CF and 

LT-BS compared to LT-IJ and in LT-BS compared to NT-BS. Our results demonstrate that processes 

controlling body sway can reduce postural variability below a variability level achieved by LT 

augmentation of body sway-related feedback alone. Both direct (LT-CF) and indirect (LT-BS) IFC 

involvement of fingertip contact minimized sway, which implies that no hierarchy existed for whole 

body sway or precision of fingertip contact (integration of both control processes) or that they can be 

reversed flexibly (one facilitating the other) if it serves the implicit goal of reduced perceptual noise 

and enhanced performance within the context of our suprapostural VSDT. 
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Dear Sirs, 

when upright stance body sway is increased during horizontal oscillatory smooth pursuit, it may 

indicate interference between oculomotor and sway control, potentially due to an efferent 

oculomotor signal [1]. In specific contexts, however, body sway reduction has also been reported 

during smooth pursuit [2]. Riccio and Stoffregen [3] argued that the postural control system also 

takes into account an individual’s behavioural goals, such as performance in a “suprapostural” task, 

especially when the task imposes visual demands in contrast to cognitive demands [4]. Therefore, 

sway may be dampened proactively to reduce self-imposed variability and to improve oculomotor 

accuracy during visual tracking or reduce retinal slip in a visual discrimination task [5,2,6]. Similarly, 

precision control of fingertip light touch (LT) with an earth-fixed reference, which most reliably 

reduces body sway [7], has been considered a suprapostural task [8]. The interpretation of proactive 

sway control assisting fingertip LT is corroborated by observations that body sway may be reduced 

for intermittent periods when LT is absent but nevertheless relevant to the postural context [9-11]. Is 

a natural sensorimotor congruency always required to elicit task-related sway adaptation or does it 

generalize to more complex sensorimotor stimulus-response mappings? Our present study adopted a 

“biofeedback” approach, in which the perceptual difficulty in a visual signal detection task (VSDT) 

was coupled (implicit feedback coupling, IFC) to either body sway directly or to the contact force 

during fingertip light touch. In both situations, we expected that body sway would be reduced 

proactively to ease the difficulty of the VSDT. 

Ten healthy right-handed young adults (4 females, 6 males; age=26.7 yrs, SD 6.0) faced a flat-screen 
display (Samsung UE40D6500) in tandem stance. A force plate (600 Hz; Bertec FP4060-10) recorded 
body sway in terms of Centre-of-Pressure (CoP) fluctuations. A single Landolt-C was presented as the 
VSDT target randomly changing the direction of its opening every 2 s while continuously oscillating 
horizontally (0.09 Hz) across the entire width of the display. Participants were instructed to press a 
response button in their non-dominant hand as fast as possible when the opening of the Landolt-C 
pointed upwards. The dominant arm was held in a default elbow-flexed posture enabling the 
extended index fingertip to contact a force-torque transducer (200Hz; ATI Nano17) on a height-
adjustable stand positioned in front. VSDT perceptual difficulty varied in terms of the amplitude of 
random vertical target jitter. Body sway was assessed in four IFC conditions: (1) LT with independent 
jitter (LT-IJ), (2) LT with jitter depending on LT contact force (LT-CF), (3) LT with jitter depending on 
body sway (LT-BS), and (4) no contact with jitter depending on body sway (NT-BS). IFC conditions 
were tested in randomly ordered blocks of 5 trials (120 s duration). Further details of the 
experimental setup are provided in the online methods supplements (Figs. 2 and 3). CoP was low-
pass filtered (4th order dual-pass Butterworth with 10Hz cut-off) and differentiated to express body 
sway as the standard deviation of CoP velocity (dCoP). Repeated-measures ANOVA was calculated 
with IFC condition as within-subject factor. An alpha level of p<0.05 was used after Greenhouse-
Geisser correction. Post-hoc single comparisons were Bonferroni-adjusted. 
The proportion of hits in the VSDT task was 67% in LT-IJ, 80% in LT-CF, 77% in LT-BS and 59% in NT-

BS. Average LT force was 0.85 N (SD 0.17) with no difference between the IFC conditions with LT. 

Resultant body sway differed between the IFC conditions (F(3,27)=12.74, p<0.001; Fig. 1). Reduced 

mediolateral sway was found in both LT-CF and LT-BS compared to LT-IJ (both p<=0.007) and in LT-BS 

compared to NT-BS (p=0.003). No difference between the IFC conditions was observed for 

anteroposterior sway (p=0.12). Nevertheless, there was a tendency for a difference between LT-BS 

and LT-IJ (p=0.09). 

 

---------Insert Figure 1 here----------------- 
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Our results demonstrate a direction-specific reduction in mediolateral body sway below a level 

achieved by LT sway-related feedback augmentation alone if an implicit feedback coupling is present. 

Similar direction-specificity of sway control has been reported in visuomanual aiming [12]. In visual 

search involving saccadic eye movements instead of smooth pursuit, Chen et al. [13] showed that LT 

improved search performance. Demands of the visual search task, however, reduced sway 

independent of LT availability so that two processes seemed to act in parallel [13]. Similarly, in our 

current study, both direct (LT-CF) and indirect (LT-BS) involvement of fingertip contact in an IFC 

condition minimized sway, which implies either that no control hierarchy existed for whole body 

sway and fingertip contact (integration of both control processes) or that the hierarchy can be 

reversed flexibly (one facilitating the other) if it serves the implicit goal of reduced perceptual noise 

and enhanced performance within the context of our suprapostural VSDT.  
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Figure caption 

Figure 1. (A) The experimental setup showing an individual in tandem stance on a force plate in front 

of the display screen with fingertip light touch of the dominant hand and a response button in the 

non-dominant hand. (B) Schematic of the stimulus display. A Landolt-C oscillated horizontally along a 

double sine-wave trajectory across the entire width of the display at a constant velocity of 

approximately 14°/s changing the direction of its opening every 2 s. Participants had to gaze-track 

the target to press the response button when its opening pointed upwards. Random jitter of variable 

amplitude in the vertical direction disrupted visibility of the Landolt-C opening thereby affecting the 
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difficulty of the visual signal detection task. Current jitter amplitude depended on the current 

fingertip contact force or current body sway. VA: visual angle. (C) Variability of mediolateral (ML; 

upper panel) and anteroposterior (AP; lower panel) body sway velocity (SD dCoP) in each implicit 

feedback condition (IFC). LT-IJ: fingertip light touch with independent maximum jitter amplitude; LT-

CF: jitter amplitude dependent on light touch fingertip contact force; LT-BS: jitter amplitude 

dependent on body sway with additional fingertip light touch; NT-BS: jitter amplitude dependent on 

body sway without additional fingertip light touch. Error bars indicated the standard error of the 

mean. Straight horizontal arcs indicate significant post-hoc single comparisons (p<0.05), a dotted 

horizontal arc indicates a statistical tendency (p<0.10). 

 

Supplementary Figure 2. Schematic of the processes adjusting random vertical jitter amplitude in 

response to light fingertip contact force or body sway in each implicit feedback condition (IFC). In 

each stream a reference for minimum vertical jitter amplitude was defined. In the body sway-

referenced IFC condition, the average mediolateral (ML) Centre-of-Pressure position (AV ML CoP) 

was extracted from a pre-trial period, two seconds before the begin of the target oscillation. This 

resembled the baseline reference for the minimum vertical jitter amplitude. During a trial the jitter 

amplitude was adjusted in proportion to the deviation from the reference. In the contact force-

referenced IFC condition, 1 N normal force onto the force-torque transducer resembled the baseline 

reference. A deviation of the contact force from this reference resulted in a proportional adjustment 

of jitter amplitude, if the contact force fell into the range of 0.4 N to 1.6 N. Outside this range, jitter 

amplitude was maximal without dependency on the contact force. In the third IFC, jitter was always 

maximal without any dependency on body sway or fingertip contact force. LT-IJ: fingertip light touch 

with independent maximum jitter amplitude; LT-CF: jitter amplitude dependent on light touch 

fingertip contact force; LT-BS: jitter amplitude dependent on body sway with additional fingertip light 

touch; NT-BS: jitter amplitude dependent on body sway without additional fingertip light touch. 

 

Supplementary Figure 3. Data traces illustrating each of the implicit feedback coupling (IFC) 

conditions. The top row shows the target jitter on the display screen and the middle row the 

corresponding input signal generating the evoked jitter response. The bottom row shows 

mediolateral body sway velocity (ML dCoP). LT-IJ: fingertip light touch with independent maximum 

jitter amplitude; LT-CF: jitter amplitude dependent on light touch fingertip contact force; LT-BS: jitter 

amplitude dependent on body sway with additional fingertip light touch; NT-BS: jitter amplitude 

dependent on body sway without additional fingertip light touch. 
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