119 research outputs found

    Characterization of mercury(II)-induced inhibition of photochemistry in the reaction center of photosynthetic bacteria

    Get PDF
    Mercuric contamination of aqueous cultures results in impairment of viability of photosynthetic bacteria primarily by inhibition of the photochemistry of the reaction center (RC) protein. Isolated reaction centers (RCs) from Rhodobacter sphaeroides were exposed to Hg(2+) ions up to saturation concentration (~ 10(3) [Hg(2+)]/[RC]) and the gradual time- and concentration-dependent loss of the photochemical activity was monitored. The vast majority of Hg(2+) ions (about 500 [Hg(2+)]/[RC]) had low affinity for the RC [binding constant Kb ~ 5 mM(-1)] and only a few (~ 1 [Hg(2+)]/[RC]) exhibited strong binding (Kb ~ 50 muM(-1)). Neither type of binding site had specific and harmful effects on the photochemistry of the RC. The primary charge separation was preserved even at saturation mercury(II) concentration, but essential further steps of stabilization and utilization were blocked already in the 5 < [Hg(2+)]/[RC] < 50 range whose locations were revealed. (1) The proton gate at the cytoplasmic site had the highest affinity for Hg(2+) binding (Kb ~ 0.2 muM(-1)) and blocked the proton uptake. (2) Reduced affinity (Kb ~ 0.05 muM(-1)) was measured for the mercury(II)-binding site close to the secondary quinone that resulted in inhibition of the interquinone electron transfer. (3) A similar affinity was observed close to the bacteriochlorophyll dimer causing slight energetic changes as evidenced by a ~ 30 nm blue shift of the red absorption band, a 47 meV increase in the redox midpoint potential, and a ~ 20 meV drop in free energy gap of the primary charge pair. The primary quinone was not perturbed upon mercury(II) treatment. Although the Hg(2+) ions attack the RC in large number, the exertion of the harmful effect on photochemistry is not through mass action but rather a couple of well-defined targets. Bound to these sites, the Hg(2+) ions can destroy H-bond structures, inhibit protein dynamics, block conformational gating mechanisms, and modify electrostatic profiles essential for electron and proton transfer

    Insoluble glycogen, a metabolizable internal adsorbent, decreases the lethality of endotoxin shock in rats

    Get PDF
    Insoluble glycogen is an enzymatically modified form of naturally occurring soluble glycogen with a great adsorbing capacity. It can be metabolized by phagocytes to glucose. In this study we used insoluble glycogen intravenously in the experimental endotoxin shock of rats. Wistar male rats were sensitized to endotoxin by Pb acetate. The survival of rats were compared in groups of animals endotoxin shock treated and non-treated with insoluble glycogen. Furthermore, we have determined in vitro the binding capacity of insoluble glycogen for endotoxin, tumour necrosis factor alpha, interleukin-1 and secretable phospholipase A2. Use of 10 mg/kg dose of insoluble glycogen could completely prevent the lethality of shock induced by LD50 quantity of endotoxin in rats. All animals treated survived. Insoluble glycogen is a form of ‘metabolizable internal adsorbents’. It can potentially be used for treatment of septic shock

    Systemic inflammatory response syndrome (SIRS) induced by carbon tetrachloride in rats

    Get PDF
    We have observed the symptoms of systemic inflammatory response syndrome (SIRS) in male rats intoxicated by carbon tetrachloride (CCl(4)). Severe hypothermia, tachypnoea and increase in the heart beat min were diagnosed. These symptoms developed in the first hour of intoxication. The hepatic dysfunction was characterized by elevated bilirubin levels. In the sera we have measured increases in the activity of secretable (group II) phospholipase A(2) sPLA(2) (2,8x) and 6-ketoprostaglandin F(1α) (KPGF) (1,44x). Supposedly the free radicals derived from CCl(4)—mainly trichloromethyl—could induce the prompt reaction of SIRS and the release of sPLA(2) as well as the formation of KPGF. Our findings show that in the early phase of CCl(4) intoxication the symptoms of SIRS can be related to elevation of sPLA(2) and the products of cyclooxygenase II

    Local host response following an intramammary challenge with Staphylococcus fleurettii and different strains of Staphylococcus chromogenes in dairy heifers

    Get PDF
    Coagulase-negative staphylococci (CNS) are a common cause of subclinical mastitis in dairy cattle. The CNS inhabit various ecological habitats, ranging between the environment and the host. In order to obtain a better insight into the host response, an experimental infection was carried out in eight healthy heifers in mid-lactation with three different CNS strains: a Staphylococcus fleurettii strain originating from sawdust bedding, an intramammary Staphylococcus chromogenes strain originating from a persistent intramammary infection (S. chromogenes IM) and a S. chromogenes strain isolated from a heifer's teat apex (S. chromogenes TA). Each heifer was inoculated in the mammary gland with 1.0 x 10(6) colony forming units of each bacterial strain (one strain per udder quarter), whereas the remaining quarter was infused with phosphate-buffered saline. Overall, the CNS evoked a mild local host response. The somatic cell count increased in all S. fleurettii-inoculated quarters, although the strain was eliminated within 12 h. The two S. chromogenes strains were shed in larger numbers for a longer period. Bacterial and somatic cell counts, as well as neutrophil responses, were higher after inoculation with S. chromogenes IM than with S. chromogenes TA. In conclusion, these results suggest that S. chromogenes might be better adapted to the mammary gland than S. fleurettii. Furthermore, not all S. chromogenes strains induce the same local host response

    The mammosphere-derived epithelial cell secretome modulates neutrophil functions in the bovine model

    Get PDF
    BackgroundInnovative therapies against bacterial infections are needed. One approach is to focus on host-directed immunotherapy (HDT), with treatments that exploit natural processes of the host immune system. The goals of this type of therapy are to stimulate protective immunity while minimizing inflammation-induced tissue damage. We use non-traditional large animal models to explore the potential of the mammosphere-derived epithelial cell (MDEC) secretome, consisting of all bioactive factors released by the cells, to modulate host immune functions. MDEC cultures are enriched for mammary stem and progenitor cells and can be generated from virtually any mammal. We previously demonstrated that the bovine MDEC secretome, collected and delivered as conditioned medium (CM), inhibits the growth of bacteria in vitro and stimulates functions related to tissue repair in cultured endothelial and epithelial cells.MethodsThe immunomodulatory effects of the bovine MDEC secretome on bovine neutrophils, an innate immune cell type critical for resolving bacterial infections, were determined in vitro using functional assays. The effects of MDEC CM on neutrophil molecular pathways were explored by evaluating the production of specific cytokines by neutrophils and examining global gene expression patterns in MDEC CM-treated neutrophils. Enzyme linked immunosorbent assays were used to determine the concentrations of select proteins in MDEC CM and siRNAs were used to reduce the expression of specific MDEC-secreted proteins, allowing for the identification of bioactive factors modulating neutrophil functions.ResultsNeutrophils exposed to MDEC secretome exhibited increased chemotaxis and phagocytosis and decreased intracellular reactive oxygen species and extracellular trap formation, when compared to neutrophils exposed to control medium. C-X-C motif chemokine 6, superoxide dismutase, peroxiredoxin-2, and catalase, each present in the bovine MDEC secretome, were found to modulate neutrophil functions.ConclusionThe MDEC secretome administered to treat bacterial infections may increase neutrophil recruitment to the site of infection, stimulate pathogen phagocytosis by neutrophils, and reduce neutrophil-produced ROS accumulation. As a result, pathogen clearance might be improved and local inflammation and tissue damage reduced

    Ruthenium polypyridyl complexes and their modes of interaction with DNA : is there a correlation between these interactions and the antitumor activity of the compounds?

    Get PDF
    Various interaction modes between a group of six ruthenium polypyridyl complexes and DNA have been studied using a number of spectroscopic techniques. Five mononuclear species were selected with formula [Ru(tpy) L1L2](2-n)?, and one closely related dinuclear cation of formula [{Ru(apy)(tpy)}2{l-H2N(CH2)6NH2}]4?. The ligand tpy is 2,20:60,200-terpyridine and the ligand L1 is a bidentate ligand, namely, apy (2,20-azobispyridine), 2-phenylazopyridine, or 2-phenylpyridinylmethylene amine. The ligand L2 is a labile monodentate ligand, being Cl-, H2O, or CH3CN. All six species containing a labile L2 were found to be able to coordinate to the DNA model base 9-ethylguanine by 1H NMR and mass spectrometry. The dinuclear cationic species, which has no positions available for coordination to a DNA base, was studied for comparison purposes. The interactions between a selection of four representative complexes and calf-thymus DNA were studied by circular and linear dichroism. To explore a possible relation between DNA-binding ability and toxicity, all compounds were screened for anticancer activity in a variety of cancer cell lines, showing in some cases an activity which is comparable to that of cisplatin. Comparison of the details of the compound structures, their DNA binding, and their toxicity allows the exploration of structure–activity relationships that might be used to guide optimization of the activity of agents of this class of compounds

    Dependence of the Rate-Limiting Steps in the Dark-to-Light Transition of Photosystem II on the Lipidic Environment of the Reaction Center

    Get PDF
    In our earlier works, we have identified rate-limiting steps in the dark-to-light transition of PSII. By measuring chlorophyll a fluorescence transients elicited by single-turnover saturating flashes (STSFs) we have shown that in diuron-treated samples an STSF generates only F-1 (< F-m) fluorescence level, and to produce the maximum (F-m) level, additional excitations are required, which, however, can only be effective if sufficiently long Ar waiting times are allowed between the excitations. Biological variations in the half-rise time (Delta tau(1/2)) of the fluorescence increment suggest that it may be sensitive to the physicochemical environment of PSII. Here, we investigated the influence of the lipidic environment on Delta tau(1/2) of PSII cote complexes of Thermosynechococcus vulcanus. We found that while non-native lipids had no noticeable effects, thylakoid membrane lipids considerably shortened the Delta tau(1/2), from similar to 1 ms to similar to 0.2 ins. The importance of the presence of native lipids was confirmed by obtaining similarly short Delta tau(1/2 )values in the whole T. vulcanus cells and isolated pea thylakoid membranes. Minor, lipid-dependent reorganizations were also observed by steady-state and time-resolved spectroscopic measurements. These data show that the processes beyond the dark-to-light transition of PSII depend significantly on the lipid matrix of the reaction center

    Designing organometallic compounds for catalysis and therapy

    Get PDF
    Bioorganometallic chemistry is a rapidly developing area of research. In recent years organometallic compounds have provided a rich platform for the design of effective catalysts, e.g. for olefin metathesis and transfer hydrogenation. Electronic and steric effects are used to control both the thermodynamics and kinetics of ligand substitution and redox reactions of metal ions, especially Ru II. Can similar features be incorporated into the design of targeted organometallic drugs? Such complexes offer potential for novel mechanisms of drug action through incorporation of outer-sphere recognition of targets and controlled activation features based on ligand substitution as well as metal- and ligand-based redox processes. We focus here on Ρ 6-arene, Ρ 5-cyclopentadienyl sandwich and half-sandwich complexes of Fe II, Ru II, Os II and Ir III with promising activity towards cancer, malaria, and other conditions. Š 2012 The Royal Society of Chemistry
    • …
    corecore