69 research outputs found

    Rural Development Programme measures on cultivated land in Europe to mitigate greenhouse gas emissions – regional ‘hotspots’ and priority measures

    Get PDF
    © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.Agriculture is a significant source of GHG emissions, contributing 10% of total emissions within the EU-28. Emissions from European agriculture have been reduced, albeit at the expense of crop yield and the risk of production displacement (the transfer of production, and associated emissions, to land outside of Europe). This article assesses the impact on GHG emissions of selected European Rural Development Program measures, representative of a diversity of management strategies implemented on cultivated land, within nine European Member States. Climatic zone and underlying spatial environmental variables were accounted for using a novel technique, “Regional Variation Categories,” developed with European-scale GIS data sets. Production displacement is assessed with two benchmarks: (1) compared with existing crop production and (2) relative to a “minimum requirement” land management scenario, where an emissions reduction of less than this does not constitute mitigation. Most measures reduce emissions relative to the baseline crop scenario; however, many do not reduce emissions beyond the “minimum requirement,” this being limited to measures such as catch crops and within-field grass areas to prevent soil erosion. The selection and targeting of measures to maximize agricultural GHG mitigation on cultivated land within Europe is discussed...Peer reviewedFinal Published versio

    Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research

    Get PDF
    Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long-term experiments on physical-chemical-biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology and geomorphology

    A roadmap for high-resolution satellite soil moisture applications – confronting product characteristics with user requirements

    Get PDF
    Soil moisture observations are of broad scientific interest and practical value for a wide range of applications. The scientific community has made significant progress in estimating soil moisture from satellite-based Earth observation data, particularly in operationalizing coarse-resolution (25-50 km) soil moisture products. This review summarizes existing applications of satellite-derived soil moisture products and identifies gaps between the characteristics of currently available soil moisture products and the application requirements from various disciplines. We discuss the efforts devoted to the generation of high-resolution soil moisture products from satellite Synthetic Aperture Radar (SAR) data such as Sentinel-1 C-band backscatter observations and/or through downscaling of existing coarse-resolution microwave soil moisture products. Open issues and future opportunities of satellite-derived soil moisture are discussed, providing guidance for further development of operational soil moisture products and bridging the gap between the soil moisture user and supplier communities
    • 

    corecore