56 research outputs found

    Voltage-dependent Na+ channel phenotype changes in myoblasts. Consequences for cardiac repair

    Full text link
    Objective: Cellular cardiomyoplasty using skeletal myoblasts is a promising therapy for myocardial infarct repair. Once transplanted, myoblasts grow, differentiate and adapt their electrophysiological properties towards more cardiac-like phenotypes. Voltage-dependent Na + channels (Na v ) are the main proteins involved in the propagation of the cardiac action potential, and their phenotype affects cardiac performance. Therefore, we examined the expression of Na v during proliferation and differentiation in skeletal myocytes. Methods and results: We used the rat neonatal skeletal myocyte cell line L6E9. Proliferation of L6E9 cells induced Na v 1.4 and Na v 1.5, although neither protein has an apparent role in cell growth. During myogenesis, Na v1.5 was largely induced. Electrophysiological and pharmacological properties, as well as mRNA expression, indicate that cardiac-type Na v1.5 accounts for almost 90% of the Na + current in myotubes. Unlike in proliferation, this protein plays a pivotal role in myogenesis. The adoption of a cardiac-like phenotype is further supported by the increase in Nav 1.5 colocalization in caveolae. Finally, we demonstrate that the treatment of myoblasts with neuregulin further increased Na v 1.5 in skeletal myocytes. Conclusion: Our results indicate that skeletal myotubes adopt a cardiac-like phenotype in cell culture conditions and that the expression of Na v1.5 acts as an underlying molecular mechanism

    Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages

    Get PDF
    Voltage-dependent K(+) (Kv) currents in macrophages are mainly mediated by Kv1.3, but biophysical properties indicate that the channel composition could be different from that of T-lymphocytes. K(+) currents in mouse bone marrow-derived and Raw-264.7 macrophages are sensitive to Kv1.3 blockers, but unlike T-cells, macrophages express Kv1.5. Because Shaker subunits (Kv1) may form heterotetrameric complexes, we investigated whether Kv1.5 has a function in Kv currents in macrophages. Kv1.3 and Kv1.5 co-localize at the membrane, and half-activation voltages and pharmacology indicate that K(+) currents may be accounted for by various Kv complexes in macrophages. Co-expression of Kv1.3 and Kv1.5 in human embryonic kidney 293 cells showed that the presence of Kv1.5 leads to a positive shift in K(+) current half-activation voltages and that, like Kv1.3, Kv1.3/Kv1.5 heteromers are sensitive to r-margatoxin. In addition, both proteins co-immunoprecipitate and co-localize. Fluorescence resonance energy transfer studies further demonstrated that Kv1.5 and Kv1.3 form heterotetramers. Electrophysiological and pharmacological studies of different ratios of Kv1.3 and Kv1.5 co-expressed in Xenopus oocytes suggest that various hybrids might be responsible for K(+) currents in macrophages. Tumor necrosis factor-alpha-induced activation of macrophages increased Kv1.3 with no changes in Kv.1.5, which is consistent with a hyperpolarized shift in half-activation voltage and a lower IC(50) for margatoxin. Taken together, our results demonstrate that Kv1.5 co-associates with Kv1.3, generating functional heterotetramers in macrophages. Changes in the oligomeric composition of functional Kv channels would give rise to different biophysical and pharmacological properties, which could determine specific cellular responses

    Vector-borne and other pathogens of potential relevance disseminated by relocated cats

    Get PDF
    Large populations of unowned cats constitute an animal welfare, ecological, societal and public health issue worldwide. Their relocation and homing are currently carried out in many parts of the world with the intention of relieving suffering and social problems, while contributing to ethical and humane population control in these cat populations. An understanding of an individual cat’s lifestyle and disease status by veterinary team professionals and those working with cat charities can help to prevent severe cat stress and the spread of feline pathogens, especially vector-borne pathogens, which can be overlooked in cats. In this article, we discuss the issue of relocation and homing of unowned cats from a global perspective. We also review zoonotic and non-zoonotic infectious agents of cats and give a list of practical recommendations for veterinary team professionals dealing with homing cats. Finally, we present a consensus statement consolidated at the 15th Symposium of the Companion Vector-Borne Diseases (CVBD) World Forum in 2020, ultimately to help veterinary team professionals understand the problem and the role they have in helping to prevent and manage vector-borne and other pathogens in relocated cats

    Kv7 Channels Can Function without Constitutive Calmodulin Tethering

    Get PDF
    M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC), a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function

    Impact of chronic obstructive pulmonary disease on short-term outcome in patients with ST-elevation myocardial infarction during COVID-19 pandemic: insights from the international multicenter ISACS-STEMI registry

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is projected to become the third cause of mortality worldwide. COPD shares several pathophysiological mechanisms with cardiovascular disease, especially atherosclerosis. However, no definite answers are available on the prognostic role of COPD in the setting of ST elevation myocardial infarction (STEMI), especially during COVID-19 pandemic, among patients undergoing primary angioplasty, that is therefore the aim of the current study. Methods: In the ISACS-STEMI COVID-19 registry we included retrospectively patients with STEMI treated with primary percutaneous coronary intervention (PCI) between March and June of 2019 and 2020 from 109 high-volume primary PCI centers in 4 continents. Results: A total of 15,686 patients were included in this analysis. Of them, 810 (5.2%) subjects had a COPD diagnosis. They were more often elderly and with a more pronounced cardiovascular risk profile. No preminent procedural dissimilarities were noticed except for a lower proportion of dual antiplatelet therapy at discharge among COPD patients (98.9% vs. 98.1%, P = 0.038). With regards to short-term fatal outcomes, both in-hospital and 30-days mortality occurred more frequently among COPD patients, similarly in pre-COVID-19 and COVID-19 era. However, after adjustment for main baseline differences, COPD did not result as independent predictor for in-hospital death (adjusted OR [95% CI] = 0.913[0.658–1.266], P = 0.585) nor for 30-days mortality (adjusted OR [95% CI] = 0.850 [0.620–1.164], P = 0.310). No significant differences were detected in terms of SARS-CoV-2 positivity between the two groups. Conclusion: This is one of the largest studies investigating characteristics and outcome of COPD patients with STEMI undergoing primary angioplasty, especially during COVID pandemic. COPD was associated with significantly higher rates of in-hospital and 30-days mortality. However, this association disappeared after adjustment for baseline characteristics. Furthermore, COPD did not significantly affect SARS-CoV-2 positivity. Trial registration number: NCT 04412655 (2nd June 2020)

    Inhibitors of trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease.

    Get PDF
    Chagas disease remains one of the most neglected diseases in the world despite being the most important parasitic disease in Latin America. The characteristic chronic manifestation of chagasic cardiomyopathy is the region's leading cause of heart-related illness, causing significant mortality and morbidity. Due to the limited available therapeutic options, new drugs are urgently needed to control the disease. Sirtuins, also called Silent information regulator 2 (Sir2) proteins have long been suggested as interesting targets to treat different diseases, including parasitic infections. Recent studies on Trypanosoma cruzi sirtuins have hinted at the possibility to exploit these enzymes as a possible drug targets. In the present work, the T. cruzi Sir2 related protein 1 (TcSir2rp1) is genetically validated as a drug target and biochemically characterized for its NAD+-dependent deacetylase activity and its inhibition by the classic sirtuin inhibitor nicotinamide, as well as by bisnaphthalimidopropyl (BNIP) derivatives, a class of parasite sirtuin inhibitors. BNIPs ability to inhibit TcSir2rp1, and anti-parasitic activity against T. cruzi amastigotes in vitro were investigated. The compound BNIP Spermidine (BNIPSpd) (9), was found to be the most potent inhibitor of TcSir2rp1. Moreover, this compound showed altered trypanocidal activity against TcSir2rp1 overexpressing epimastigotes and anti-parasitic activity similar to the reference drug benznidazole against the medically important amastigotes, while having the highest selectivity index amongst the compounds tested. Unfortunately, BNIPSpd failed to treat a mouse model of Chagas disease, possibly due to its pharmacokinetic profile. Medicinal chemistry modifications of the compound, as well as alternative formulations may improve activity and pharmacokinetics in the future. Additionally, an initial TcSIR2rp1 model in complex with p53 peptide substrate was obtained from low resolution X-ray data (3.5 Å) to gain insight into the potential specificity of the interaction with the BNIP compounds. In conclusion, the search for TcSir2rp1 specific inhibitors may represent a valuable strategy for drug discovery against T. cruzi

    Genetic Control of Canine Leishmaniasis: Genome-Wide Association Study and Genomic Selection Analysis

    Get PDF
    Background: the current disease model for leishmaniasis suggests that only a proportion of infected individuals develop clinical disease, while others are asymptomatically infected due to immune control of infection. The factors that determine whether individuals progress to clinical disease following Leishmania infection are unclear, although previous studies suggest a role for host genetics. Our hypothesis was that canine leishmaniasis is a complex disease with multiple loci responsible for the progression of the disease from Leishmania infection. Methodology/Principal Findings: genome-wide association and genomic selection approaches were applied to a population-based case-control dataset of 219 dogs from a single breed (Boxer) genotyped for ~170,000 SNPs. Firstly, we aimed to identify individual disease loci; secondly, we quantified the genetic component of the observed phenotypic variance; and thirdly, we tested whether genome-wide SNP data could accurately predict the disease. Conclusions/Significance: we estimated that a substantial proportion of the genome is affecting the trait and that its heritability could be as high as 60%. Using the genome-wide association approach, the strongest associations were on chromosomes 1, 4 and 20, although none of these were statistically significant at a genome-wide level and after correcting for genetic stratification and lifestyle. Amongst these associations, chromosome 4: 61.2-76.9 Mb maps to a locus that has previously been associated with host susceptibility to human and murine leishmaniasis, and genomic selection estimated markers in this region to have the greatest effect on the phenotype. We therefore propose these regions as candidates for replication studies. An important finding of this study was the significant predictive value from using the genomic information. We found that the phenotype could be predicted with an accuracy of ~0.29 in new samples and that the affection status was correctly predicted in 60% of dogs, significantly higher than expected by chance, and with satisfactory sensitivity-specificity values (AUC = 0.63)

    Impact of Smoking Status on Mortality in STEMI Patients Undergoing Mechanical Reperfusion for STEMI : Insights from the ISACS–STEMI COVID-19 Registry

    Get PDF
    The so-called “smoking paradox”, conditioning lower mortality in smokers among STEMI patients, has seldom been addressed in the settings of modern primary PCI protocols. The ISACS– STEMI COVID-19 is a large-scale retrospective multicenter registry addressing in-hospital mortality, reperfusion, and 30-day mortality among primary PCI patients in the era of the COVID-19 pandemic. Among the 16,083 STEMI patients, 6819 (42.3%) patients were active smokers, 2099 (13.1%) previous smokers, and 7165 (44.6%) non-smokers. Despite the impaired preprocedural recanalization (p < 0.001), active smokers had a significantly better postprocedural TIMI flow compared with nonsmokers (p < 0.001); this was confirmed after adjustment for all baseline and procedural confounders, and the propensity score. Active smokers had a significantly lower in-hospital (p < 0.001) and 30-day (p < 0.001) mortality compared with non-smokers and previous smokers; this was confirmed after adjustment for all baseline and procedural confounders, and the propensity score. In conclusion, in our population, active smoking was significantly associated with improved epicardial recanalization and lower in-hospital and 30-day mortality compared with previous and non-smoking histor

    Impact of chronic obstructive pulmonary disease on short-term outcome in patients with ST-elevation myocardial infarction during COVID-19 pandemic: insights from the international multicenter ISACS-STEMI registry

    Get PDF
    Background Chronic obstructive pulmonary disease (COPD) is projected to become the third cause of mortality worldwide. COPD shares several pathophysiological mechanisms with cardiovascular disease, especially atherosclerosis. However, no definite answers are available on the prognostic role of COPD in the setting of ST elevation myocardial infarction (STEMI), especially during COVID-19 pandemic, among patients undergoing primary angioplasty, that is therefore the aim of the current study. Methods In the ISACS-STEMI COVID-19 registry we included retrospectively patients with STEMI treated with primary percutaneous coronary intervention (PCI) between March and June of 2019 and 2020 from 109 high-volume primary PCI centers in 4 continents. Results A total of 15,686 patients were included in this analysis. Of them, 810 (5.2%) subjects had a COPD diagnosis. They were more often elderly and with a more pronounced cardiovascular risk profile. No preminent procedural dissimilarities were noticed except for a lower proportion of dual antiplatelet therapy at discharge among COPD patients (98.9% vs. 98.1%, P = 0.038). With regards to short-term fatal outcomes, both in-hospital and 30-days mortality occurred more frequently among COPD patients, similarly in pre-COVID-19 and COVID-19 era. However, after adjustment for main baseline differences, COPD did not result as independent predictor for in-hospital death (adjusted OR [95% CI] = 0.913[0.658-1.266], P = 0.585) nor for 30-days mortality (adjusted OR [95% CI] = 0.850 [0.620-1.164], P = 0.310). No significant differences were detected in terms of SARS-CoV-2 positivity between the two groups. Conclusion This is one of the largest studies investigating characteristics and outcome of COPD patients with STEMI undergoing primary angioplasty, especially during COVID pandemic. COPD was associated with significantly higher rates of in-hospital and 30-days mortality. However, this association disappeared after adjustment for baseline characteristics. Furthermore, COPD did not significantly affect SARS-CoV-2 positivity. Trial registration number: NCT 04412655 (2nd June 2020)
    corecore