1,055 research outputs found

    Review on the acute Daphnia magna

    Full text link
    Executive summary : One of the most internationally used bioassays for toxicity screening of chemicals and for toxicity monitoring of effluents and contaminated waters is the acute toxicity test with daphnid crustaceans, and in particular that performed with Daphnia magna. Standard methods have been developed for this assay that were gradually endorsed by national and international organisations dealing with toxicity testing procedures, in view of its application within a regulatory framework. As for all toxicity tests, the organisms used for the acute D. magna assay have to be obtained from live stocks which are cultured in the laboratory on live food (micro-algae). Unsurprisingly the various standard protocols of this particular assay differ – at least to a certain extent – with regard to the test organism culturing conditions. In addition, some technical aspects of the toxicity test such as the effect criterion (mortality of immobility), the exposure time, the type of dilution water, etc., also vary from one standard to another. Although this particular assay is currently used in many countries, the technical and biological problems inherent in year-round culturing and availability of the biological material and the culturing/maintenance costs of live stocks restrict its application to a limited number of highly specialised laboratories. This fundamental bottleneck in toxicity testing triggered investigations which brought forward the concept of “microbiotests” or “small-scale” toxicity tests. “Culture/maintenance free” aquatic microbiotests with species of different phylogenetic groups were developed in the early 1990s at the Laboratory for Environmental Toxicology and Aquatic Ecology at the Ghent University in Belgium. These assays which were given the generic name “Toxkits”, are unique in that they employ dormant stages (“cryptobiotic eggs”) of the test species, which can be stored for long periods of time and “hatched” at the time of performance of the assays. One of these microbiotests is the Daphtoxkit F magna, which is currently used in many laboratories worldwide for research as well as for toxicity monitoring purposes. The microbiotest technology has several advantages in comparison to the “traditional” tests based on laboratory cultures, especially its independence of the stock culturing burden. However, the acceptance (or possible non-acceptance) of performing assays with test organisms obtained from “dormant eggs” should be clearly dictated by the “sensitivity” and “precision” criteria of the former assays in comparison to the latter. The first part of this review therefore thoroughly reviews the scientific literature and of data obtained from various laboratories for assays performed with either D. magna test organisms obtained from lab cultures or hatched from dormant eggs. Attention has focused on data of quality control tests performed on reference chemicals, and in particular on potassium dichromate (K2Cr2O7) for which an acceptability range of 0.6–2.1 mg·L–1 has been set in ISO standard 6341 for the 24 h EC50 of the acute D. magna assay. Mean EC50s, standard deviations and variation coefficients were calculated from the collected data, all of which are presented in tables and figures and discussed in detail. The major conclusions drawn from the analysis of the large number of quality control (QC) data on the acute D. magna toxicity test are that : (1) Virtually all results from assays performed with Daphnias taken from lab cultures or with Daphnia microbiotests are within the acceptability range set by ISO standard 6341 for the reference chemical potassium dichromate. (2) The mean 24 h EC50s of the Daphnia microbiotests performed in different laboratories are within the range of the mean EC50s of the assays based on lab cultures, and the variation coefficients (20 to 30%) are similar. (3) The precision – in terms of the long term in house variability – of the quality control Daphnia microbiotests is as good as that of the QC tests based on lab cultures. The review further reports on intra-laboratory sensitivity comparison studies performed during the last 15 years on pure chemicals and on natural samples, with both laboratory cultured organisms and Daphnias hatched from dormant eggs. These studies carried out in different laboratories showed EC50 correlation coefficients of 0.86 to 0.98, corroborating a similar sensitivity of the two types of test organisms. The third part of the review reports and analyses data on proficiency ringtests on the acute D. magna assay which have been organised in different countries since 2002 with either reference chemicals or with natural samples, and in which part of the laboratories performed their assays with Daphnia microbiotests and others with lab cultured Daphnias. The conclusions drawn from all the ringtests indicate that the sensitivity of Daphnia neonates hatched from dormant eggs is similar to that of test organisms taken from lab cultures and that in most cases the precision of the Daphnia microbiotest is superior to that of the assays based on lab cultures. The review finally addresses the issue of possible sensitivity differences of Daphnias hatched from dormant eggs which are produced by different D. magna strains. From these investigations it appeared that the EC50s from assays performed with Daphnias hatched from dormant eggs of different strains did not differ significantly from those from assays undertaken with daphnids from lab cultures. The obvious advantages of Daphnia microbiotests over tests with Daphnias stemming from lab cultures have led to the worldwide use of these culture/maintenance free and low cost small-scale assays in both research and toxicity monitoring. The Daphnia microbiotest is in current use in several countries for toxicity testing in a regulatory framework, and recent calculations indicate that about 10 000 acute D. magna assays are now performed annually with neonates hatched from dormant eggs. The use of dormant eggs to obtain test organisms independently of stock culturing has recently also been accepted in international standards for toxicity testing. ISO standard 20665 (2008) related to the determination of chronic toxicity with Ceriodaphnia dubia, and ISO standard 20666 (2008) for the determination of the chronic toxicity with Brachionus calyciflorus in 48 h, both indicate that the assays can be conducted with organisms hatched from dormant eggs. On the basis of the extensive scientific evidence provided in this review that is justifiably supported by the two ISO methods mentioned above, the authors therefore recommend that the use of Daphnias hatched from dormant eggs should also be incorporated in national and international standards, as an alternative to the use of Daphnias taken from laboratory cultures

    Dietary and Behavioral Interventions Protect against Age Related Activation of Caspase Cascades in the Canine Brain

    Get PDF
    Lifestyle interventions such as diet, exercise, and cognitive training represent a quietly emerging revolution in the modern approach to counteracting age-related declines in brain health. Previous studies in our laboratory have shown that long-term dietary supplementation with antioxidants and mitochondrial cofactors (AOX) or behavioral enrichment with social, cognitive, and exercise components (ENR), can effectively improve cognitive performance and reduce brain pathology of aged canines, including oxidative damage and Aβ accumulation. In this study, we build on and extend our previous findings by investigating if the interventions reduce caspase activation and ceramide accumulation in the aged frontal cortex, since caspase activation and ceramide accumulation are common convergence points for oxidative damage and Aβ, among other factors associated with the aged and AD brain. Aged beagles were placed into one of four treatment groups: CON – control environment/control diet, AOX– control environment/antioxidant diet, ENR – enriched environment/control diet, AOX/ENR– enriched environment/antioxidant diet for 2.8 years. Following behavioral testing, brains were removed and frontal cortices were analyzed to monitor levels of active caspase 3, active caspase 9 and their respective cleavage products such as tau and semaphorin7a, and ceramides. Our results show that levels of activated caspase-3 were reduced by ENR and AOX interventions with the largest reduction occurring with combined AOX/ENR group. Further, reductions in caspase-3 correlated with reduced errors in a reversal learning task, which depends on frontal cortex function. In addition, animals treated with an AOX arm showed reduced numbers of cells expressing active caspase 9 or its cleavage product semaphorin 7A, while ENR (but not AOX) reduced ceramide levels. Overall, these data demonstrate that lifestyle interventions curtail activation of pro-degenerative pathways to improve cellular health and are the first to show that lifestyle interventions can regulate caspase pathways in a higher animal model of aging

    Diagnosis and misdiagnosis of adult neuronal ceroid lipofuscinosis (Kufs disease)

    Get PDF
    OBJECTIVE: To critically re-evaluate cases diagnosed as adult neuronal ceroid lipofuscinosis (ANCL) in order to aid clinicopathologic diagnosis as a route to further gene discovery. METHODS: Through establishment of an international consortium we pooled 47 unsolved cases regarded by referring centers as ANCL. Clinical and neuropathologic experts within the Consortium established diagnostic criteria for ANCL based on the literature to assess each case. A panel of 3 neuropathologists independently reviewed source pathologic data. Cases were given a final clinicopathologic classification of definite ANCL, probable ANCL, possible ANCL, or not ANCL. RESULTS: Of the 47 cases, only 16 fulfilled the Consortium's criteria of ANCL (5 definite, 2 probable, 9 possible). Definitive alternate diagnoses were made in 10, including Huntington disease, early-onset Alzheimer disease, Niemann-Pick disease, neuroserpinopathy, prion disease, and neurodegeneration with brain iron accumulation. Six cases had features suggesting an alternate diagnosis, but no specific condition was identified; in 15, the data were inadequate for classification. Misinterpretation of normal lipofuscin as abnormal storage material was the commonest cause of misdiagnosis. CONCLUSIONS: Diagnosis of ANCL remains challenging; expert pathologic analysis and recent molecular genetic advances revealed misdiagnoses in >1/3 of cases. We now have a refined group of cases that will facilitate identification of new causative genes

    Patterned cell culture inside microfluidic devices

    Get PDF
    This paper describes a simple plasma-based dry etching method that enables patterned cell culture inside microfluidic devices by allowing patterning, fluidic bonding and sterilization steps to be carried out in a single step. This plasma-based dry etching method was used to pattern celladhesive and non-adhesive areas on the glass and polystyrene substrates. The patterned substrate was used for selective attachment and growth of human umbilical vein endothelial cells, MDAMB- 231 human breast cancer cells, NIH 3T3 mouse fibroblasts, and primary rat cortical neurons. Finally, we have successfully combined the dry-patterned substrate with a microfluidic device. Patterned primary rat neurons were maintained for up to 6 days inside the microfluidic devices and the neurons somas and processes were confined to the cell-adhesive region. The method developed in this work offers a convenient way of micropatterning biomaterials for selective attachment of cells on the substrates, and enables culturing of patterned cells inside microfluidic devices for a number of biological research applications where cells need to be exposed to wellcontrolled fluidic microenvironment.The Institute for Brain Aging and Dementia thanks NIA (AG17765

    Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    Get PDF
    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation

    Apolipoprotein E and Alzheimer’s disease: The influence of apolipoprotein E on amyloid- and other amyloidogenic proteins

    Get PDF

    Distinct Early Molecular Responses to Mutations Causing vLINCL and JNCL Presage ATP Synthase Subunit C Accumulation in Cerebellar Cells

    Get PDF
    Variant late-infantile neuronal ceroid lipofuscinosis (vLINCL), caused by CLN6 mutation, and juvenile neuronal ceroid lipofuscinosis (JNCL), caused by CLN3 mutation, share clinical and pathological features, including lysosomal accumulation of mitochondrial ATP synthase subunit c, but the unrelated CLN6 and CLN3 genes may initiate disease via similar or distinct cellular processes. To gain insight into the NCL pathways, we established murine wild-type and CbCln6nclf/nclf cerebellar cells and compared them to wild-type and CbCln3Δex7/8/Δex7/8 cerebellar cells. CbCln6nclf/nclf cells and CbCln3Δex7/8/Δex7/8 cells both displayed abnormally elongated mitochondria and reduced cellular ATP levels and, as cells aged to confluence, exhibited accumulation of subunit c protein in Lamp 1-positive organelles. However, at sub-confluence, endoplasmic reticulum PDI immunostain was decreased only in CbCln6nclf/nclf cells, while fluid-phase endocytosis and LysoTracker® labeled vesicles were decreased in both CbCln6nclf/nclf and CbCln3Δex7/8/Δex7/8 cells, though only the latter cells exhibited abnormal vesicle subcellular distribution. Furthermore, unbiased gene expression analyses revealed only partial overlap in the cerebellar cell genes and pathways that were altered by the Cln3Δex7/8 and Cln6nclf mutations. Thus, these data support the hypothesis that CLN6 and CLN3 mutations trigger distinct processes that converge on a shared pathway, which is responsible for proper subunit c protein turnover and neuronal cell survival
    corecore