225 research outputs found

    Orientation dependence of the elastic instability on strained SiGe films

    Full text link
    At low strain, SiGe films on Si substrates undergo a continuous nucleationless morphological evolution known as the Asaro-Tiller-Grinfeld instability. We demonstrate experimentally that this instability develops on Si(001) but not on Si(111) even after long annealing. Using a continuum description of this instability, we determine the origin of this difference. When modeling surface diffusion in presence of wetting, elasticity and surface energy anisotropy, we find a retardation of the instability on Si(111) due to a strong dependence of the instability onset as function of the surface stiffness. This retardation is at the origin of the inhibition of the instability on experimental time scales even after long annealing.Comment: 3 pages, 4 figure

    Tumor-Induced Cholesterol Efflux from Macrophages Drives IL-4 Mediated Reprogramming and Tumor Progression

    Get PDF
    Tumor-associated macrophages (TAM) have been shown to have important roles in the malignant progression of various cancers. However, macrophages also posses intrinsic tumoricidal activity and can promote the activity of cytotoxic lymphocytes, but they rapidly adopt an alternative phenotype within tumors, associated with immune-suppression and trophic functions that support tumor growth. The mechanisms that promote TAM polarization in the tumor-microenvironment remain poorly understood, these mechanisms may represent important therapeutic targets to block the tumor-promoting functions of TAM and restore their anti-tumor potential. Here we have characterized TAM in a mouse model of metastatic ovarian cancer. We show that ovarian cancer cells promote membrane-cholesterol efflux and the depletion of lipid rafts from macrophages. Increased cholesterol efflux promoted IL-4 mediated reprogramming while inhibiting IFNγ-induced gene expression. These studies reveal an unexpected role for tumor-induced membrane-cholesterol efflux in driving the IL-4 signaling and the tumor-promoting functions of TAM, while rendering them refractory to pro-inflammatory stimuli. Thus, preventing cholesterol efflux in TAM could represent a novel therapeutic strategy to block pro-tumor functions and restore anti-tumor immunity. Biopharmaceutic

    Common Gene Variants in the Tumor Necrosis Factor (TNF) and TNF Receptor Superfamilies and NF-kB Transcription Factors and Non-Hodgkin Lymphoma Risk

    Get PDF
    BACKGROUND:A promoter polymorphism in the pro-inflammatory cytokine tumor necrosis factor (TNF) (TNF G-308A) is associated with increased non-Hodgkin lymphoma (NHL) risk. The protein product, TNF-alpha, activates the nuclear factor kappa beta (NF-kappaB) transcription factor, and is critical for inflammatory and apoptotic responses in cancer progression. We hypothesized that the TNF and NF-kappaB pathways are important for NHL and that gene variations across the pathways may alter NHL risk. METHODOLOGY/PRINCIPAL FINDINGS:We genotyped 500 tag single nucleotide polymorphisms (SNPs) from 48 candidate gene regions (defined as 20 kb 5', 10 kb 3') in the TNF and TNF receptor superfamilies and the NF-kappaB and related transcription factors, in 1946 NHL cases and 1808 controls pooled from three independent population-based case-control studies. We obtained a gene region-level summary of association by computing the minimum p-value ("minP test"). We used logistic regression to compute odds ratios and 95% confidence intervals for NHL and four major NHL subtypes in relation to SNP genotypes and haplotypes. For NHL, the tail strength statistic supported an overall relationship between the TNF/NF-kappaB pathway and NHL (p = 0.02). We confirmed the association between TNF/LTA on chromosome 6p21.3 with NHL and found the LTA rs2844484 SNP most significantly and specifically associated with the major subtype, diffuse large B-cell lymphoma (DLBCL) (p-trend = 0.001). We also implicated for the first time, variants in NFKBIL1 on chromosome 6p21.3, associated with NHL. Other gene regions identified as statistically significantly associated with NHL included FAS, IRF4, TNFSF13B, TANK, TNFSF7 and TNFRSF13C. Accordingly, the single most significant SNPs associated with NHL were FAS rs4934436 (p-trend = 0.0024), IRF4 rs12211228 (p-trend = 0.0026), TNFSF13B rs2582869 (p-trend = 0.0055), TANK rs1921310 (p-trend = 0.0025), TNFSF7 rs16994592 (p-trend = 0.0024), and TNFRSF13C rs6002551 (p-trend = 0.0074). All associations were consistent in each study with no apparent specificity for NHL subtype. CONCLUSIONS/SIGNIFICANCE:Our results provide consistent evidence that variation in the TNF superfamily of genes and specifically within chromosome 6p21.3 impacts lymphomagenesis. Further characterization of these susceptibility loci and identification of functional variants are warranted

    Complement activation capacity in plasma before and during high-dose prednisolone treatment and tapering in exacerbations of Crohn's disease and ulcerative colitis

    Get PDF
    BACKGROUND: Ulcerative colitis (UC) and Crohn's disease (CD) are characterized by intestinal inflammation mainly caused by a disturbance in the balance between cytokines and increased complement (C) activation. Our aim was to evaluate possible associations between C activation capacity and prednisolone treatment. METHODS: Plasma from patients with exacerbations of UC (n = 18) or CD (n = 18) were collected before and during high dose prednisolone treatment (1 mg/kg body weight) and tapering. Friedman's two way analysis of variance, Mann-Whitney U test and Wilcoxon signed-rank sum test were used RESULTS: Before treatment, plasma from CD patients showed significant elevations in all C-mediated analyses compared to the values obtained from 38 healthy controls (p < 0.02), and in mannan binding lectin (MBL)-concentration and MBL-C4-activation capacity (AC) values compared to UC patients (p < 0.02). Before treatment, plasma from UC patients showed significant elevations only in the classical pathway-mediated C3-AC compared to values obtained from healthy controls (p < 0.01). After treatment was initiated, significant reductions, which persisted during follow-up, were observed in the classical pathway-mediated C3-AC and MBL-C4-AC in plasma from CD patients (p < 0.05). CONCLUSION: Our findings indicate that C activation capacity is up-regulated significantly in plasma from CD patients. The decreases observed after prednisolone treatment reflect a general down-regulation in immune activation

    Regulation of the cd38 promoter in human airway smooth muscle cells by TNF-α and dexamethasone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD38 is expressed in human airway smooth muscle (HASM) cells, regulates intracellular calcium, and its expression is augmented by tumor necrosis factor alpha (TNF-α). CD38 has a role in airway hyperresponsiveness, a hallmark of asthma, since deficient mice develop attenuated airway hyperresponsiveness compared to wild-type mice following intranasal challenges with cytokines such as IL-13 and TNF-α. Regulation of CD38 expression in HASM cells involves the transcription factor NF-κB, and glucocorticoids inhibit this expression through NF-κB-dependent and -independent mechanisms. In this study, we determined whether the transcriptional regulation of CD38 expression in HASM cells involves response elements within the promoter region of this gene.</p> <p>Methods</p> <p>We cloned a putative 3 kb promoter fragment of the human <it>cd38 </it>gene into pGL3 basic vector in front of a luciferase reporter gene. Sequence analysis of the putative <it>cd38 </it>promoter region revealed one NF-κB and several AP-1 and glucocorticoid response element (GRE) motifs. HASM cells were transfected with the 3 kb promoter, a 1.8 kb truncated promoter that lacks the NF-κB and some of the AP-1 sites, or the promoter with mutations of the NF-κB and/or AP-1 sites. Using the electrophoretic mobility shift assays, we determined the binding of nuclear proteins to oligonucleotides encoding the putative <it>cd38 </it>NF-κB, AP-1, and GRE sites, and the specificity of this binding was confirmed by gel supershift analysis with appropriate antibodies.</p> <p>Results</p> <p>TNF-α induced a two-fold activation of the 3 kb promoter following its transfection into HASM cells. In cells transfected with the 1.8 kb promoter or promoter constructs lacking NF-κB and/or AP-1 sites or in the presence of dexamethasone, there was no induction in the presence of TNF-α. The binding of nuclear proteins to oligonucleotides encoding the putative <it>cd38 </it>NF-κB site and some of the six AP-1 sites was increased by TNF-α, and to some of the putative <it>cd38 </it>GREs by dexamethasone.</p> <p>Conclusion</p> <p>The EMSA results and the cd38 promoter-reporter assays confirm the functional role of NF-κB, AP-1 and GREs in the cd38 promoter in the transcriptional regulation of CD38.</p

    Anti-inflammatory agents and monoHER protect against DOX-induced cardiotoxicity and accumulation of CML in mice

    Get PDF
    Cardiac damage is the major limiting factor for the clinical use of doxorubicin (DOX). Preclinical studies indicate that inflammatory effects may be involved in DOX-induced cardiotoxicity. Nɛ-(carboxymethyl) lysine (CML) is suggested to be generated subsequent to oxidative stress, including inflammation. Therefore, the aim of this study was to investigate whether CML increased in the heart after DOX and whether anti-inflammatory agents reduced this effect in addition to their possible protection on DOX-induced cardiotoxicity. These effects were compared with those of the potential cardioprotector 7-monohydroxyethylrutoside (monoHER)

    Arachidonic Acid but not Eicosapentaenoic Acid (EPA) and Oleic Acid Activates NF-κB and Elevates ICAM-1 Expression in Caco-2 Cells

    Get PDF
    In patients with inflammatory bowel disease (IBD), intestinal activation of the transcription factor NF-κB as well as intercellular adhesion molecule (ICAM)-1 expression, which is involved in recruiting leukocytes to the side of inflammation is increased. Moreover, colonic arachidonic acid (ARA) proportions are increased and oleic acid (OA) proportions are decreased. Fish oils are protective in IBD patients however, a side-by-side comparison between effects of fish oils, ARA and OA has not been made. We therefore, compared effects of eicosapentaenoic acid (EPA) versus ARA and OA on ICAM-1 expression in Caco-2 enterocytes. To validate our model we showed that dexamethasone, sulfasalazine and PPARα (GW7647) or PPARγ (troglitazone) agonists significantly lowered ICAM-1 expression. ICAM-1 expression of non-stimulated and cytokine stimulated Caco-2 cells cultured for 22 days with ARA was significant higher as compared to EPA and OA. Furthermore, ARA increased NF-κB activation in a reporter cell-line as compared to EPA. Antibody array analysis of multiple inflammatory proteins particularly showed an increased monocyte chemotactic protein (MCP)-1 and angiogenin production and a decreased interleukin (IL)-6 and IL-10 production by ARA as compared to EPA. Our results showed that ARA but not EPA and OA activates NF-κB and elevates ICAM-1 expression in Caco-2 enterocytes. It suggests that replacement of ARA by EPA or OA in the colon mucosa might have beneficial effects for IBD patients. Finally, we suggest that the pro-inflammatory effects of ARA versus EPA and OA are not related to PPARγ activation and/or eicosanoid formation

    Conformational changes and flexibility in T-cell receptor recognition of peptide–MHC complexes

    Get PDF
    A necessary feature of the immune system, TCR (T-cell receptor) cross-reactivity has been implicated in numerous autoimmune pathologies and is an underlying cause of transplant rejection. Early studies of the interactions of αβ TCRs (T-cell receptors) with their peptide–MHC ligands suggested that conformational plasticity in the TCR CDR (complementarity determining region) loops is a dominant contributor to T-cell cross-reactivity. Since these initial studies, the database of TCRs whose structures have been solved both bound and free is now large enough to permit general conclusions to be drawn about the extent of TCR plasticity and the types and locations of motion that occur. In the present paper, we review the conformational differences between free and bound TCRs, quantifying the structural changes that occur and discussing their possible roles in specificity and cross-reactivity. We show that, rather than undergoing major structural alterations or ‘folding’ upon binding, the majority of TCR CDR loops shift by relatively small amounts. The structural changes that do occur are dominated by hinge-bending motions, with loop remodelling usually occurring near loop apexes. As predicted from previous studies, the largest changes are in the hypervariable CDR3α and CDR3β loops, although in some cases the germline-encoded CDR1α and CDR2α loops shift in magnitudes that approximate those of the CDR3 loops. Intriguingly, the smallest shifts are in the germline-encoded loops of the β-chain, consistent with recent suggestions that the TCR β domain may drive ligand recognition
    corecore