146 research outputs found

    Relationship of circulating hyaluronic Acid levels to disease control in asthma and asthmatic pregnancy.

    Get PDF
    Uncontrolled asthma is a risk factor for pregnancy-related complications. Hyaluronic acid (HA), a potential peripheral blood marker of tissue fibrosis in various diseases, promotes eosinophil survival and plays a role in asthmatic airway inflammation as well as in physiological processes necessary to maintain normal pregnancy; however the level of circulating HA in asthma and asthmatic pregnancy is unknown. We investigated HA levels in asthmatic patients (N = 52; asthmatic pregnant (AP) N = 16; asthmatic non-pregnant (ANP) N = 36) and tested their relationship to asthma control. Serum HA level was lower in AP than in ANP patients (27 [24.7-31.55] vs. 37.4 [30.1-66.55] ng/mL, p = 0.006); the difference attenuated to a trend after its adjustment for patients' age (p = 0.056). HA levels and airway resistance were positively (r = 0.467, p = 0.004), HA levels and Asthma Control Test (ACT) total score inversely (r = -0.437, p = 0.01) associated in ANP patients; these relationships remained significant even after their adjustments for age. The potential value of HA in the determination of asthma control was analyzed using ROC analysis which revealed that HA values discriminate patients with ACT total score >/=20 (controlled patients) and <20 (uncontrolled patients) with a 0.826 efficacy (AUC, 95% CI: 0.69-0.97, p = 0.001) when 37.4 ng/mL is used as cut-off value in ANP group, and with 0.78 efficacy (AUC, 95% CI: 0.65-0.92, p = 0.0009) in the whole asthmatic cohort. In conclusion circulating HA might be a marker of asthma control, as it correlates with airway resistance and has good sensitivity in the detection of impaired asthma control. Decrease of HA level in pregnancy may be the consequence of pregnancy induced immune tolerance

    Understanding metric-related pitfalls in image analysis validation

    Get PDF
    Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.Comment: Shared first authors: Annika Reinke, Minu D. Tizabi; shared senior authors: Paul F. J\"ager, Lena Maier-Hei

    Measurement of the branching fraction and CP asymmetry in B plus . J/.. plus decays

    Get PDF
    The branching fraction and direct C ⁣PC\!P asymmetry of the decay B+J/ψρ+B^{+}\rightarrow J/\psi \rho^{+} are measured using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7 and 8 TeV, corresponding to a total integrated luminosity of 3\mbox{fb}^{-1}. The following results are obtained: \begin{align} \mathcal{B}(B^{+}\rightarrow J/\psi \rho^{+}) &= (3.81 ^{+0.25}_{-0.24} \pm 0.35) \times 10^{-5}, \nonumber \\ \mathcal{A}^{C\!P} (B^{+}\rightarrow J/\psi \rho^{+}) &= -0.045^{+0.056}_{-0.057} \pm 0.008, \nonumber \end{align} where the first uncertainties are statistical and the second systematic. Both measurements are the most precise to date.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2018-036.htm

    Search for beautiful tetraquarks in the <i>ϒ</i>(1<i>S</i>)μ<sup>+</sup>μ<sup>−</sup> invariant-mass spectrum

    Get PDF
    International audienceThe ϒ(1S)μ+^{+}μ^{−} invariant-mass distribution is investigated for a possible exotic meson state composed of two b quarks and two b \overline{b} quarks, Xbbbb {X}_{b\overline{b}b\overline{b}} . The analysis is based on a data sample of pp collisions recorded with the LHCb detector at centre-of-mass energies s=7 \sqrt{s}=7 , 8 and 13 TeV, corresponding to an integrated luminosity of 6.3 fb1^{−1}. No significant excess is found, and upper limits are set on the product of the production cross-section and the branching fraction as functions of the mass of the Xbbbb {X}_{b\overline{b}b\overline{b}} state. The limits are set in the fiducial volume where all muons have pseudorapidity in the range [2.0, 5.0], and the Xbbbb {X}_{b\overline{b}b\overline{b}} state has rapidity in the range [2.0, 4.5] and transverse momentum less than 15 GeV/c

    Evidence for an ηc(1S)π- resonance in B0→ηc(1S)K+π- decays

    Get PDF
    A Dalitz plot analysis of B0→ηc(1S)K+π- decays is performed using data samples of pp collisions collected with the LHCb detector at centre-of-mass energies of s=7,8 and 13TeV , corresponding to a total integrated luminosity of 4.7fb-1 . A satisfactory description of the data is obtained when including a contribution representing an exotic ηc(1S)π- resonant state. The significance of this exotic resonance is more than three standard deviations, while its mass and width are 4096±20-22+18MeV and 152±58-35+60MeV , respectively. The spin-parity assignments JP=0+ and JP=1- are both consistent with the data. In addition, the first measurement of the B0→ηc(1S)K+π- branching fraction is performed and gives B(B0→ηc(1S)K+π-)=(5.73±0.24±0.13±0.66)×10-4, where the first uncertainty is statistical, the second systematic, and the third is due to limited knowledge of external branching fractions

    Evidence for an ηc(1S) π− Resonance in B0 → ηc(1S) K+ π− Decays

    Get PDF
    A Dalitz plot analysis of B0 → ηc(1S) K+ π− decays is performed using data samples of pp collisions collected with the LHCb detector at centre-of-mass energies of √s =7, 8 and 13 TeV, corresponding to a total integrated luminosity of 4.7 fb^−1. A satisfactory description of the data is obtained when including a contribution representing an exotic ηc(1S) π− resonant state. The significance of this exotic resonance is more than three standard deviations, while its mass and width are 4096 ± 20{−22}{+18} MeV and 152 ± 58{−35}{+60} MeV, respectively. The spin-parity assignments JP = 0+ and JP = 1− are both consistent with the data. In addition, the first measurement of the B0 → ηc(1S) K+ π− branching fraction is performed and gives B(B0 → ηc(1S) K+ π−) = (5.73 ± 0.24 ± 0.13 ± 0.66) × 10^−4, where the first uncertainty is statistical, the second systematic, and the third is due to limited knowledge of external branching fractions
    corecore