157 research outputs found

    Personality Traits and Behavioral Syndromes in Differently Urbanized Populations of House Sparrows (Passer domesticus)

    Get PDF
    Urbanization creates novel environments for wild animals where selection pressures may differ drastically from those in natural habitats. Adaptation to urban life involves changes in various traits, including behavior. Behavioral traits often vary consistently among individuals, and these so-called personality traits can be correlated with each other, forming behavioral syndromes. Despite their adaptive significance and potential to act as constraints, little is known about the role of animal personality and behavioral syndromes in animals' adaptation to urban habitats. In this study we tested whether differently urbanized habitats select for different personalities and behavioral syndromes by altering the population mean, inter-individual variability, and correlations of personality traits. We captured house sparrows (Passer domesticus) from four different populations along the gradient of urbanization and assessed their behavior in standardized test situations. We found individual consistency in neophobia, risk taking, and activity, constituting three personality axes. On the one hand, urbanization did not consistently affect the mean and variance of these traits, although there were significant differences between some of the populations in food neophobia and risk taking (both in means and variances). On the other hand, both urban and rural birds exhibited a behavioral syndrome including object neophobia, risk taking and activity, whereas food neophobia was part of the syndrome only in rural birds. These results indicate that there are population differences in certain aspects of personality in house sparrows, some of which may be related to habitat urbanization. Our findings suggest that urbanization and/or other population-level habitat differences may not only influence the expression of personality traits but also alter their inter-individual variability and the relationships among them, changing the structure of behavioral syndromes

    Do Fleas Affect Energy Expenditure of Their Free-Living Hosts?

    Get PDF
    Parasites can cause energetically costly behavioural and immunological responses which potentially can reduce host fitness. However, although most laboratory studies indicate that the metabolic rate of the host increases with parasite infestation, this has never been shown in free-living host populations. In fact, studies thus far have shown no effect of parasitism on field metabolic rate (FMR).We tested the effect of parasites on the energy expenditure of a host by measuring FMR using doubly-labelled water in free-living Baluchistan gerbils (Gerbillus nanus) infested by naturally occurring fleas during winter, spring and summer. We showed for the first time that FMR of free-living G. nanus was significantly and positively correlated with parasite load in spring when parasite load was highest; this relationship approached significance in summer when parasite load was lowest but was insignificant in winter. Among seasons, winter FMRs were highest and summer FMRs were lowest in G. nanus.The lack of parasite effect on FMR in winter could be related to the fact that FMR rates were highest among seasons. In this season, thermoregulatory costs are high which may indicate that less energy could be allocated to defend against parasites or to compensate for other costly activities. The question about the cost of parasitism in nature is now one of the major themes in ecological physiology. Our study supports the hypothesis that parasites can elevate FMR of their hosts, at least under certain conditions. However, the effect is complex and factors such as season and parasite load are involved

    Learning to Eat Vegetables in Early Life: The Role of Timing, Age and Individual Eating Traits

    Get PDF
    Vegetable intake is generally low among children, who appear to be especially fussy during the pre-school years. Repeated exposure is known to enhance intake of a novel vegetable in early life but individual differences in response to familiarisation have emerged from recent studies. In order to understand the factors which predict different responses to repeated exposure, data from the same experiment conducted in three groups of children from three countries (n = 332) aged 4–38 m (18.9±9.9 m) were combined and modelled. During the intervention period each child was given between 5 and 10 exposures to a novel vegetable (artichoke puree) in one of three versions (basic, sweet or added energy). Intake of basic artichoke puree was measured both before and after the exposure period. Overall, younger children consumed more artichoke than older children. Four distinct patterns of eating behaviour during the exposure period were defined. Most children were “learners” (40%) who increased intake over time. 21% consumed more than 75% of what was offered each time and were labelled “plate-clearers”. 16% were considered “non-eaters” eating less than 10 g by the 5th exposure and the remainder were classified as “others” (23%) since their pattern was highly variable. Age was a significant predictor of eating pattern, with older pre-school children more likely to be non-eaters. Plate-clearers had higher enjoyment of food and lower satiety responsiveness than non-eaters who scored highest on food fussiness. Children in the added energy condition showed the smallest change in intake over time, compared to those in the basic or sweetened artichoke condition. Clearly whilst repeated exposure familiarises children with a novel food, alternative strategies that focus on encouraging initial tastes of the target food might be needed for the fussier and older pre-school children

    CAF01 Potentiates Immune Responses and Efficacy of an Inactivated Influenza Vaccine in Ferrets

    Get PDF
    Trivalent inactivated vaccines (TIV) against influenza are given to 350 million people every year. Most of these are non-adjuvanted vaccines whose immunogenicity and protective efficacy are considered suboptimal. Commercially available non-adjuvanted TIV are known to elicit mainly a humoral immune response, whereas the induction of cell-mediated immune responses is negligible. Recently, a cationic liposomal adjuvant (dimethyldioctadecylammonium/trehalose 6,6′-dibehenate, CAF01) was developed. CAF01 has proven to enhance both humoral and cell-mediated immune responses to a number of different experimental vaccine candidates. In this study, we compared the immune responses in ferrets to a commercially available TIV with the responses to the same vaccine mixed with the CAF01 adjuvant. Two recently circulating H1N1 viruses were used as challenge to test the vaccine efficacy. CAF01 improved the immunogenicity of the vaccine, with increased influenza-specific IgA and IgG levels. Additionally, CAF01 promoted cellular-mediated immunity as indicated by interferon-gamma expressing lymphocytes, measured by flow cytometry. CAF01 also enhanced the protection conferred by the vaccine by reducing the viral load measured in nasal washes by RT-PCR. Finally, CAF01 allowed for dose-reduction and led to higher levels of protection compared to TIV adjuvanted with a squalene emulsion. The data obtained in this human-relevant challenge model supports the potential of CAF01 in future influenza vaccines

    Evidence for the ‘Good Genes’ Model: Association of MHC Class II DRB Alleles with Ectoparasitism and Reproductive State in the Neotropical Lesser Bulldog Bat, Noctilio albiventris

    Get PDF
    The adaptive immune system has a major impact on parasite resistance and life history strategies. Immunological defence is costly both in terms of immediate activation and long-term maintenance. The ‘good genes’ model predicts that males with genotypes that promote a good disease resistance have the ability to allocate more resources to reproductive effort which favours the transmission of good alleles into future generations. Our study shows a correlation between immune gene constitution (Major Histocompatibility Complex, MHC class II DRB), ectoparasite loads (ticks and bat flies) and the reproductive state in a neotropical bat, Noctilio albiventris. Infestation rates with ectoparasites were linked to specific Noal-DRB alleles, differed among roosts, increased with body size and co-varied with reproductive state particularly in males. Non-reproductive adult males were more infested with ectoparasites than reproductively active males, and they had more often an allele (Noal-DRB*02) associated with a higher tick infestation than reproductively active males or subadults. We conclude that the individual immune gene constitution affects ectoparasite susceptibility, and contributes to fitness relevant trade-offs in male N. albiventris as suggested by the ‘good genes’ model

    Blood Parasites in Owls with Conservation Implications for the Spotted Owl (Strix occidentalis)

    Get PDF
    The three subspecies of Spotted Owl (Northern, Strix occidentalis caurina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n = 17) and unique lineages (n = 12). This high level of sequence diversity is significant because only one Leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls

    Management of intra-abdominal infections : recommendations by the WSES 2016 consensus conference

    Get PDF
    This paper reports on the consensus conference on the management of intra-abdominal infections (IAIs) which was held on July 23, 2016, in Dublin, Ireland, as a part of the annual World Society of Emergency Surgery (WSES) meeting. This document covers all aspects of the management of IAIs. The Grading of Recommendations Assessment, Development and Evaluation recommendation is used, and this document represents the executive summary of the consensus conference findings.Peer reviewe
    corecore