35 research outputs found

    Analytical expressions for the deprojected Sersic model

    Get PDF
    The Sersic model has become the standard to parametrize the surface brightness distribution of early-type galaxies and bulges of spiral galaxies. A major problem is that the deprojection of the Sersic surface brightness profile to a luminosity density cannot be executed analytically for general values of the Sersic index. Mazure & Capelato (2002) used the Mathematica computer package to derive an expression of the Sersic luminosity density in terms of the Meijer G function for integer values of the Sersic index. We generalize this work using analytical means and use Mellin integral transforms to derive an exact, analytical expression for the luminosity density in terms of the Fox H function for all values of the Sersic index. We derive simplified expressions for the luminosity density, cumulative luminosity and gravitational potential in terms of the Meijer G function for all rational values of the Sersic index and we investigate their asymptotic behaviour at small and large radii. As implementations of the Meijer G function are nowadays available both in symbolic computer algebra packages and as high-performance computing code, our results open up the possibility to calculate the density of the Sersic models to arbitrary precision.Comment: 9 pages, accepted for publication in Astronomy and Astrophysic

    NGC3147: a "true" Seyfert 2 without the broad-line region

    Full text link
    We report on simultaneous optical and X-ray observations of the Seyfert galaxy, NGC3147. The XMM-Newton spectrum shows that the source is unabsorbed in the X-rays (NH<5×1020N_H<5\times10^{20} cm2^{-2}). On the other hand, no broad lines are present in the optical spectrum. The origin of this optical/X-rays misclassification (with respect to the Unification Model) cannot be attributed to variability, since the observations in the two bands are simultaneous. Moreover, a Compton-thick nature of the object can be rejected on the basis of the low equivalent width of the iron Kα\alpha line (130\simeq130 eV) and the large ratio between the 2-10 keV and the [OIII] fluxes. It seems therefore inescapable to conclude that NGC3147 intrinsically lacks the Broad Line Region (BLR), making it the first "true" Seyfert 2.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter

    Structure of the Galaxies in the NGC 80 Group

    Full text link
    BV-bands photometric data obtained at the 6-m telescope of the Special Astrophysical Observatory are used to analyze the structure of 13 large disk galaxies in the NGC 80 group. Nine of the 13 galaxies under consideration are classified by us as lenticular galaxies. The stellar populations in the galaxies are very different, from old ones with ages of T>10 Gyrs (IC 1541) to relatively young, with the ages of T<2-3 Gyr (IC 1548, NGC 85). In one case, current star formation is known (UCM 0018+2216). In most of the galaxies, more precisely in all of them more luminous than M(B) -18, two-tiered (`antitruncated') stellar disks are detected, whose radial surface brightness profiles can be fitted by two exponential segments with different scalelengths -- shorter near the center and longer at the periphery. All dwarf S0 galaxies with single-scalelength exponential disks are close companions to giant galaxies. Except for this fact, no dependence of the properties of S0 galaxies on distance from the center of the group is found. Morphological traces of minor merger are found in the lenticular galaxy NGC 85. Basing on the last two points, we conclude that the most probable mechanisms for the transformation of spirals into lenticular galaxies in groups are gravitational ones, namely, minor mergers and tidal interactions.Comment: 24 pages, 9 figures, slightly improved version of the paper published in the December, 2009, issue of the Astronomy Report

    Spectroscopic bulge-disc decomposition: a new method to study the evolution of lenticular galaxies

    Full text link
    A new method for spectroscopic bulge-disc decomposition is presented, in which the spatial light profile in a two-dimensional spectrum is decomposed wavelength-by-wavelength into bulge and disc components, allowing separate one-dimensional spectra for each component to be constructed. This method has been applied to observations of a sample of nine S0s in the Fornax Cluster in order to obtain clean high-quality spectra of their individual bulge and disc components. So far this decomposition has only been fully successful when applied to galaxies with clean light profiles, consequently limiting the number of galaxies that could be separated into bulge and disc components. Lick index stellar population analysis of the component spectra reveals that in those galaxies where the bulge and disc could be distinguished, the bulges have systematically higher metallicities and younger stellar populations than the discs. This correlation is consistent with a picture in which S0 formation comprises the shutting down of star formation in the disc accompanied by a final burst of star formation in the bulge. The variation in spatial-fit parameters with wavelength also allows us to measure approximate colour gradients in the individual components. Such gradients were detected separately in both bulges and discs, in the sense that redder light is systematically more centrally concentrated in all components. However, a search for radial variations in the absorption line strengths determined for the individual components revealed that they are absent from the vast majority of S0 discs and bulges. The absence of gradients in line indices for most galaxies implies that the colour gradient cannot be attributed to age or metallicity variations, and is therefore most likely associated with varying degrees of obscuration by dust.Comment: 10 pages, 10 figures, 1 table, accepted for publication in MNRA

    Analytical properties of Einasto dark matter haloes

    Get PDF
    Recent high-resolution N-body CDM simulations indicate that nonsingular three-parameter models such as the Einasto profile perform better than the singular two-parameter models, e.g. the Navarro, Frenk and White, in fitting a wide range of dark matter haloes. While many of the basic properties of the Einasto profile have been discussed in previous studies, a number of analytical properties are still not investigated. In particular, a general analytical formula for the surface density, an important quantity that defines the lensing properties of a dark matter halo, is still lacking to date. To this aim, we used a Mellin integral transform formalism to derive a closed expression for the Einasto surface density and related properties in terms of the Fox H and Meijer G functions, which can be written as series expansions. This enables arbitrary-precision calculations of the surface density and the lensing properties of realistic dark matter halo models. Furthermore, we compared the S\'ersic and Einasto surface mass densities and found differences between them, which implies that the lensing properties for both profiles differ.Comment: 10 pages, 2 figures. Accepted for publication in Astronomy and Astrophysic

    Secular Evolution and the Formation of Pseudobulges in Disk Galaxies

    Full text link
    We review internal processes of secular evolution in galaxy disks, concentrating on the buildup of dense central features that look like classical, merger-built bulges but that were made slowly out of disk gas. We call these pseudobulges. As an existence proof, we review how bars rearrange disk gas into outer rings, inner rings, and gas dumped into the center. In simulations, this gas reaches high densities that plausibly feed star formation. In the observations, many SB and oval galaxies show central concentrations of gas and star formation. Star formation rates imply plausible pseudobulge growth times of a few billion years. If secular processes built dense central components that masquerade as bulges, can we distinguish them from merger-built bulges? Observations show that pseudobulges retain a memory of their disky origin. They have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) large ratios of ordered to random velocities indicative of disk dynamics, (3) small velocity dispersions, (4) spiral structure or nuclear bars in the bulge part of the light profile, (5) nearly exponential brightness profiles, and (6) starbursts. These structures occur preferentially in barred and oval galaxies in which secular evolution should be rapid. So the cleanest examples of pseudobulges are recognizable. Thus a large variety of observational and theoretical results contribute to a new picture of galaxy evolution that complements hierarchical clustering and merging.Comment: 92 pages, 21 figures in 30 Postscript files; to appear in Annual Review of Astronomy and Astrophysics, Vol. 42, 2004, in press; for a version with full resolution figures, see http://chandra.as.utexas.edu/~kormendy/ar3ss.htm

    Statistical analysis of arthroplasty data: II. Guidelines

    Get PDF
    It is envisaged that guidelines for statistical analysis and presentation of results will improve the quality and value of research. The Nordic Arthroplasty Register Association (NARA) has therefore developed guidelines for the statistical analysis of arthroplasty register data. The guidelines are divided into two parts, one with an introduction and a discussion of the background to the guidelines (Ranstam et al. 2011a, see pages x-y in this issue), and this one with a more technical statistical discussion on how specific problems can be handled. This second part contains (1) recommendations for the interpretation of methods used to calculate survival, (2) recommendations on howto deal with bilateral observations, and (3) a discussion of problems and pitfalls associated with analysis of factors that influence survival or comparisons between outcomes extracted from different hospitals

    The peculiar small-scale X-ray morphology of NGC 5846 observed with Chandra

    Get PDF
    The excellent quality of the Chandra observation of NGC 5846 reveals a complex X-ray morphology of the central regions of this galaxy. An intriguing morphological similarity between the X-ray and the optical line emission, discovered before using ROSAT HRI images (Trinchieri, Noris & Di Serego Alighieri 1997), is confirmed here in unprecedented detail. Complex spectral characteristics are associated with the morphological peculiarities, indicating a possibly turbulent gas in this object. A population of ~ 40 individual sources is also observed, with Lx in the range ~ 3 x 10**{38}- 2 x 10**{39} erg/sec, with an X-ray luminosity function that is steeper in the high-luminosity end than in other early-type galaxies.Comment: Accepted for publication, A&A. Figures 1, 5, 11 have been downgraded to fit in the ps fil

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Position-velocity diagrams of ionized gas in the inner regions of disk galaxies

    Get PDF
    We use long-slit spectroscopy along the major axis of a sample of 23 nearby disk galaxies to study the kinematic properties of the ionized-gas component in their inner regions. For each galaxy, we derive the position-velocity diagram of the ionized gas from its emission lines. We discuss the variety of shapes observed in such position-velocity diagrams by comparing the gas velocity gradient, velocity dispersion and integrated flux measured in the inner (r +/-1'') and outer regions (r +/-4''). This kind of analysis allows the identification of galaxies which are good candidates to host a circumnuclear Keplerian gaseous disk rotating around a central mass concentration, and to follow up with Hubble Space Telescope observations.Comment: 17 pages. 5 PostScript figures (Fig. 2 at lower resolution). Accepted for publication in A&
    corecore