149 research outputs found

    A new model of how celebrity endorsements work: attitude toward the endorsement as a mediator of celebrity source and endorsement effects

    Get PDF
    This research introduces attitude towards the endorsement as a mediating variable in the relationships between celebrity source and endorsement factors and brand attitude. It also includes perceived celebrity motive, a variable rarely studied in the previous literature, as an endorsement factor. In a survey study, respondents evaluated four celebrity endorsement campaigns. Mediation analyses show that attitude towards the endorsement mediates the effects of three variables on brand attitude; these variables are celebrity expertise, celebrity–brand fit, and perceived celebrity motive. Moreover, results show that if consumers perceive that the celebrity was motivated to do the endorsement not only by money but also by product quality, this has a significant positive effect on attitude towards the brand

    Ranking and characterization of established BMI and lipid associated loci as candidates for gene-environment interactions

    Get PDF
    Phenotypic variance heterogeneity across genotypes at a single nucleotide polymorphism (SNP) may reflect underlying gene-environment (G×E) or gene-gene interactions. We modeled variance heterogeneity for blood lipids and BMI in up to 44,211 participants and investigated relationships between variance effects (Pv), G×E interaction effects (with smoking and physical activity), and marginal genetic effects (Pm). Correlations between Pv and Pm were stronger for SNPs with established marginal effects (Spearman’s ρ = 0.401 for triglycerides, and ρ = 0.236 for BMI) compared to all SNPs. When Pv and Pm were compared for all pruned SNPs, only BMI was statistically significant (Spearman’s ρ = 0.010). Overall, SNPs with established marginal effects were overrepresented in the nominally significant part of the Pv distribution (Pbinomial <0.05). SNPs from the top 1% of the Pm distribution for BMI had more significant Pv values (PMann–Whitney= 1.46×10−5), and the odds ratio of SNPs with nominally significant (<0.05) Pm and Pv was 1.33 (95% CI: 1.12, 1.57) for BMI. Moreover, BMI SNPs with nominally significant G×E interaction P-values (Pint<0.05) were enriched with nominally significant Pv values (Pbinomial = 8.63×10−9 and 8.52×10−7 for SNP × smoking and SNP × physical activity, respectively). We conclude that some loci with strong marginal effects may be good candidates for G×E, and variance-based prioritization can be used to identify them

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    New genetic loci link adipose and insulin biology to body fat distribution

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, we conducted genome-wide association meta-analyses of waist and hip circumference-related traits in up to 224,459 individuals. We identified 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (WHRadjBMI) and an additional 19 loci newly associated with related waist and hip circumference measures (P<5×10−8). Twenty of the 49 WHRadjBMI loci showed significant sexual dimorphism, 19 of which displayed a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation, and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Meta-analysis of Gene-Level Associations for Rare Variants Based on Single-Variant Statistics

    Get PDF
    Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associated with complex human diseases. There is a growing recognition that identifying “causal” rare variants also requires large-scale meta-analysis. The fact that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis (i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight that multivariate statistics can be recovered from single-variant statistics, together with the correlation matrix of the single-variant test statistics, which can be estimated from one of the participating studies or from a publicly available database. We show both theoretically and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint analysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits (GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available

    Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes

    Get PDF
    Gestational diabetes mellitus (GDM) is associated with increased risk of pregnancy complications and adverse perinatal outcomes. GDM often reoccurs and is associated with increased risk of subsequent diagnosis of type 2 diabetes (T2D). To improve our understanding of the aetiological factors and molecular processes driving the occurrence of GDM, including the extent to which these overlap with T2D pathophysiology, the GENetics of Diabetes In Pregnancy Consortium assembled genome-wide association studies of diverse ancestry in a total of 5485 women with GDM and 347 856 without GDM. Through multi-ancestry meta-analysis, we identified five loci with genome-wide significant association (P < 5 x 10(-8)) with GDM, mapping to/near MTNR1B (P = 4.3 x 10(-54)), TCF7L2 (P = 4.0 x 10(-16)), CDKAL1 (P = 1.6 x 10(-4)), CDKN2A-CDKN2B (P = 4.1 x 10(-9)) and HKDC1 (P = 2.9 x 10(-8)). Multiple lines of evidence pointed to the shared pathophysiology of GDM and T2D: (i) four of the five GDM loci (not HKDC1) have been previously reported at genome-wide significance for T2D; (ii) significant enrichment for associations with GDM at previously reported T2D loci; (iii) strong genetic correlation between GDM and T2D and (iv) enrichment of GDM associations mapping to genomic annotations in diabetes-relevant tissues and transcription factor binding sites. Mendelian randomization analyses demonstrated significant causal association (5% false discovery rate) of higher body mass index on increased GDM risk. Our results provide support for the hypothesis that GDM and T2D are part of the same underlying pathology but that, as exemplified by the HKDC1 locus, there are genetic determinants of GDM that are specific to glucose regulation in pregnancy.Peer reviewe
    corecore