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Abstract

Phenotypic variance heterogeneity across genotypes at a single nucleotide polymorphism

(SNP) may reflect underlying gene-environment (G×E) or gene-gene interactions. We
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modeled variance heterogeneity for blood lipids and BMI in up to 44,211 participants and

investigated relationships between variance effects (Pv), G×E interaction effects (with smok-

ing and physical activity), and marginal genetic effects (Pm). Correlations between Pv and

Pm were stronger for SNPs with established marginal effects (Spearman’s ρ = 0.401 for tri-

glycerides, and ρ = 0.236 for BMI) compared to all SNPs. When Pv and Pm were compared

for all pruned SNPs, only BMI was statistically significant (Spearman’s ρ = 0.010). Overall,

SNPs with established marginal effects were overrepresented in the nominally significant

part of the Pv distribution (Pbinomial <0.05). SNPs from the top 1% of the Pm distribution for

BMI had more significant Pv values (PMann–Whitney = 1.46×10−5), and the odds ratio of SNPs

with nominally significant (<0.05) Pm and Pv was 1.33 (95% CI: 1.12, 1.57) for BMI. More-

over, BMI SNPs with nominally significant G×E interaction P-values (Pint<0.05) were

enriched with nominally significant Pv values (Pbinomial = 8.63×10−9 and 8.52×10−7 for SNP ×
smoking and SNP × physical activity, respectively). We conclude that some loci with strong

marginal effects may be good candidates for G×E, and variance-based prioritization can be

used to identify them.

Author summary

Most contemporary studies of gene-environment interactions focus on gene variants that

are known to bear strong and reliable associations with the traits of interest. The strategy

is intuitive because it helps limit the number of tests performed by focusing on a relatively

small number of gene variants. However, this approach is predicated on an implicit

assumption that these loci are strong candidates for interactions owing to their established

relationships with the index traits. The counter-argument is that, because these loci have

highly consistent signals within and between populations that vary by environmental

characteristics, the probability that these variants interact with other factors is low. The

current analysis tests whether variants with strong marginal effects signals (i.e., those pri-

oritized through conventional genome-wide association analyses) are strong or weak can-

didates for gene-environment interactions. Here we describe analyses focused on lipids

and BMI that test this hypothesis by comparing marginal effect signals with variance effect

signals and those derived from explicit genome-wide, gene-environment interaction anal-

yses. We conclude that for BMI, there are features of the top-ranking marginal effect loci

that render them stronger candidates for interactions than is true of variants with weaker

marginal effects signals. These findings are likely to help optimize the efficiency of future

gene-environment interaction analyses by providing evidence-based rankings for strong

candidate loci.

Introduction

Gene-environment (G×E) interactions may contribute to complex diseases, but their detection

has proven challenging; hence, a variety of approaches have been developed to enhance power.

Most G×E analyses focus on loci that are strong biological candidates [1] or those with highly

significant marginal effects [2]. The latter approach is attractive because these loci are available

in many large cohorts, and can be conveniently followed-up with interaction analyses if envi-

ronmental data are accessible. Moreover, selecting SNPs with strong and reproducible
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adults accounting for smoking behaviour identifies
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marginal effect signals is a pragmatic data-reduction step that may improve power [3],

although this approach risks omitting other promising candidates [4].

In a linear regression setting, the presence of interaction effects drives phenotypic variance

heterogeneity by genotype [3,5]. Exploiting variance heterogeneity as a signature of interac-

tions is appealing because, unlike standard approaches for assessing G×E interactions, no

explicit information about environmental exposures is needed [6] and multiple exposures can

be simultaneously considered.

Here we explored whether loci identified in large-scale genome-wide association studies

(GWAS) of blood lipids and body mass index (BMI) are strong candidates for G×E interac-

tions by comparing genome-wide variance heterogeneity P-value distributions generated

using Levene’s test against P-value distributions for marginal effects and explicit G×E interac-

tion effects (for smoking and physical activity).

Results

We assessed between-genotype variance heterogeneity for up to 1,927,671 directly genotyped

or imputed SNPs (HapMap II CEU reference panel [7]) that passed quality control (QC).

Meta-analyses of Levene’s test summary statistics [8] were performed for BMI (n�44,211 par-

ticipants), and blood concentrations of high-density lipoprotein cholesterol (HDL-C)

(n�34,315), low-density lipoprotein cholesterol (LDL-C) (n�34,180), total cholesterol (TC)

(n�34,318) and triglycerides (TG) (n�34,110). We then obtained marginal effects results for

the same index traits and SNPs from publicly available GWAS summary data from the GIANT

(Genetic Investigation of ANthropometric Traits) Consortium [9] and GLGC (Global Lipids

Genetics Consortium) [10,11].

We compared the genome-wide marginal effects with between-genotype variance heteroge-

neity results for each of the five cardiometabolic traits by calculating the association between

marginal effects (Pm) and variance heterogeneity (Pv) P-values using the rank-based Spearman

correlation (ρ). This was done using a set of 42,710 pruned SNPs produced using the--indep-
pairwise command in PLINK (see Materials and Methods) to account for linkage disequilib-

rium (LD) among variants.

As shown in Table 1 (see also Fig 1A and S1 Table), the Spearman’s ρ for the association

between Pm and Pv for all pruned SNPs was of very small magnitude and only statistically sig-

nificant for BMI. The exclusion of SNPs based on progressively more conservative Pm thresh-

olds (Pm<0.05; Pm<10−4; previously established loci with Pm<5×10−8 in external datasets),

saw corresponding improvements in the magnitude of these correlations, which were statisti-

cally significant for all traits except TC when focusing on previously established loci. The BMI

correlation at the Pm<0.05 threshold, as well as the test of equality with ρ for all SNPs, was sta-

tistically significant, suggesting concordance between marginal and variance signals at a nomi-

nal level of significance. The odds ratio (OR) for a SNP to have both Pm<0.05 and Pv<0.05 as

compared to Pv�0.05 was 1.33 (95% CI: 1.12, 1.57) for BMI while the 95% CIs of ORs for

other traits included 1. On the other hand, the P-value for a non-zero ρ for TG was statistically

significant when focusing on the established loci and at Pm<10−4, suggesting concordance

between marginal and variance signals at more conservative Pm thresholds.

We further compared Pm with interaction P-values from exposure-specific (smoking and

physical activity) genome-wide interaction tests for BMI (Pint); this was only done for BMI

owing to the requirement for an adequately powered external dataset (such a dataset was

accessible through the GIANT consortium) (Table 2). Marginal effects GWAS were performed

by strata of smokers vs. non-smokers and physically active vs. inactive participants (n =

210,316 European-ancestry adults [12]) respectively, and a heterogeneity test [12] was used to
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generate exposure specific Pint distributions. Spearman ρ for the pruned set of SNPs in the

SNP × physical activity and the SNP × smoking analyses were low and not statistically

Fig 1. A. Percentile-scaled ranks of GWAS-derived SNPs for lipid traits on the genome-wide

distribution of P-values from Levene’s meta-analysis. For each lipid trait (HDL-C, LDL-C, TG and TC

on the vertical axis) we ranked Pv from Levene’s test for all SNPs from lowest to highest so that the lowest Pv

for a given trait was assigned a rank equal to 1. We scaled ranks into percentiles such that the lowest Pv

corresponded to the 100th percentile. We then plotted percentile-scaled ranks of GWAS-derived loci (black

sticks on the blue axis) on the distribution of percentile-scaled ranks of genome-wide Pv (blue axis) for each

trait and marked in red loci with Pv<0.05. Loci names are presented above the axis for Pv distribution of a

given trait and are positioned in the same order as percentile-scaled ranks of GWAS-derived loci, but are

equally spaced to facilitate cross-trait comparison (loci names with Levene’s test Pv<0.05 are highlighted in

red). To the left of each axis we present counts of GWAS-derived loci with Pv<0.05 and total number of

GWAS-derived loci in the analysis separated by a dash, as well as the P-value for the binomial test (Pbinomial).

B. Percentile-scaled ranks of GWAS-derived SNPs for BMI on the genome-wide distribution of P-

values obtained from Levene’s test (Pv) and between-strata difference test P-values (Pint) from the

‘SNP × Physical Activity’ and ‘SNP × Smoking’ interaction tests for BMI. For each analysis, we ranked P-

values for all SNPs from lowest to highest so that the lowest P-value for a given trait was assigned a rank

equal to 1. We scaled ranks into percentiles such that the lowest P-value corresponded to the 100th percentile.

We then plotted percentile-scaled ranks of GWAS-derived loci (black sticks on the blue axis) on the

distribution of percentile-scaled ranks of genome-wide P-values (blue axis) from all four approaches and

marked in red loci with Pv<0.05 or Pint<0.05 (or 95th percentile for average rank between SNP × PA and SNP

× Smoking). Loci names are presented above the axis for the P-value distribution of a given trait and are

positioned in the same order as the percentile-scaled ranks of GWAS-derived loci, but are equally spaced to

facilitate cross-trait comparisons (loci names with Pv<0.05 or Pint<0.05 are highlighted in red). To the left of

each axis conveying each respective P-value distribution, we present counts of GWAS-derived BMI loci with

Pv<0.05 or Pint<0.05 (or 95th percentile for the average rank of the SNP × PA and SNP × Smoking interaction

tests) and the total number of GWAS-derived loci in the analysis separated by a dash, as well as the P-value

for the binomial test (Pbinomial).

https://doi.org/10.1371/journal.pgen.1006812.g001
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significant (Table 2). We also compared Pint values and Pv values for BMI. Spearman’s ρ for the

pruned set of SNPs were low and not statistically significant.

We next tested if the number of previously established marginal effect SNPs (Pm<5×10−8)

that were also nominally significant (Pv<0.05) for variance heterogeneity was greater than

expected by chance (Tables 3 and 4, Fig 1). For 4 out of the 5 index traits, we observed enrich-

ment at the lower end of the Pv distribution (Pv<0.05) for the established GWAS-derived lead

SNPs. Thus, the nominally significant regions of the Pv distributions were generally enriched

for GWAS-derived loci.

We also performed enrichment analyses to test if previously established marginal effects

SNPs (Pm<5×10−8) are enriched for nominally significant (Pint<0.05) interactions in the SNP
× physical activity or SNP × Smoking analyses, but no enrichment was observed (Table 3; Fig

1B). By contrast, for the physical activity and smoking interaction tests (using all pruned

SNPs), the lower end of the Pint distribution (Pint<0.05) was enriched with SNPs that were

nominally significant in the Levene’s test analysis (Pv<0.05) (Table 4). This enrichment trans-

lated into an OR of 1.08 (95% CI: 1.01, 1.14) for a SNP to have Pint<0.05 given Pv<0.05 vs.

Table 2. Spearman correlations between Pint in SNP × Physical Activity and SNP × Smoking on BMI analyses and marginal effects Pm or heteroge-

neity of variance from Levene’s test Pv.

Characteristic Max Sample

Size

Max Sample Size PA/

Smoking

All SNPs SNPs with Pm<0.05 Known SNPs

# SNPs Spearman

ρ
P-

value

# SNPs Spearman

ρ
P-

value

# SNPs Spearman

ρ
P-value

Marginal effects Pm

PA × SNP 322,144 180,271 41838 0.001 0.761 2142 0.029 0.176 71 -0.003 0.978

Smoking ×
SNP

322,144 210,306 41371 -0.004 0.429 2351 0.010 0.619 71 0.205 0.0863

Levene’s test for homogeneity of variance Pv

PA × SNP 44,211 180,271 41838 0.005 0.35 2142 -0.003 0.884 71 0.052 0.669

Smoking ×
SNP

44,211 210,306 41371 0.004 0.401 2351 -0.023 0.265 71 0.110 0.360

PA: physical activity; BMI: body mass index; SNP: single nucleotide polymorphism; Pv: Variance (Levene’s) test P-value; Pm: Marginal (linear regression)

test P-value

https://doi.org/10.1371/journal.pgen.1006812.t002

Table 3. Enrichment of variance and gene × environment interaction nominally significant results

with GWAS-derived loci.

Trait Analysis Total SNPs/

Observed SNPs with P<0.05 (Expected)

Pbinomial

BMI Levene’s 71/10 (3.6) 3×10−3

SNP × PA 71/4 (3.6) 0.48

SNP × Smoking 71/5 (3.6) 0.28

Average for SNP × PA & SNP × Smoking 71/2 (3.6) 0.88

TG Levene’s 40/9 (2) 1×10−4

LDL-C Levene’s 53/8 (2.7) 5×10−3

HDL-C Levene’s 68/6 (3.4) 0.12

TC Levene’s 69/9 (3.5) 7×10−3

PA: physical activity; BMI: body mass index; GWAS: genome-wide association study; HDL-C: low-density

lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; SNP: single nucleotide polymorphism;

TC: total cholesterol; TG: triglycerides

https://doi.org/10.1371/journal.pgen.1006812.t003
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Pv�0.05 for SNP × physical activity interaction. The corresponding OR for the SNP × smoking
interaction test was not significant (OR = 1.02; 95% CI: 0.96, 1.08).

Finally, in the pruned SNP-set we used the Mann–Whitney U test to probe for systematic

differences in Pv and Pm ranks. P-values were ordered from least significant to most significant,

and the lowest 100th centile (i.e. the most significantly associated SNPs) was compared to the

remaining 99th percentile for each of the five traits. For BMI, SNPs in the lowest 100th centile

of the Pm distribution had markedly higher Pv ranks (i.e. more significant Pv) than the remain-

ing SNPs (PMann–Whitney = 1.46×10−5; Table 5). Even when excluding previously established

lead SNPs (Pm<5×10−8) for BMI (or SNPs +/-500kb proximal), SNPs from the lowest 100th

centile of the Pm rank-ordered distribution had higher Pv ranks than the remaining SNPs

(PMann–Whitney = 4.30×10−4; Table 5). Conversely, no difference in Pv ranks was observed for

SNPs from the lowest 100th centile of the Pm rank-ordered distribution for the four blood

lipid traits; this may reflect trait-specific G×E effects or differences in statistical power by trait.

No differences in Pv ranks between SNPs from the lowest 99th centile of the Pm rank-ordered

distribution compared to SNPs from the 98th to 1st centiles of the distribution were observed

for any trait (PMann–Whitney>0.05; Table 5). Similarly, no difference in Pm ranks was observed

for SNPs from the lowest 100th centile of the Pv rank-ordered distribution for any traits

(PMann–Whitney>0.05; Table 6).

Table 4. Enrichment of SNPs with nominally significant Pint for test of SNP × Smoking and

SNP × Physical Activity interaction for BMI (Pint<0.05) by SNPs with nominally significant Levene’s

test (Pv<0.05).

Analysis Total SNPs with Pint<0.05/ Observed SNPs with Pint<0.05 & Pv<0.05

(Expected)

Pbinomial

SNP × PA 2142/159 (107.1) 8.52×10−7

SNP ×
Smoking

2351/182 (117.6) 8.63×10−9

BMI: body mass index; PA: physical activity; SNP: single nucleotide polymorphism; Pv = Variance

(Levene’s) test P-value; Pint = G×E interaction (heterogeneity) test P-value; Pbinomial = significance of

observing Pv<0.05 more than expected by chance

https://doi.org/10.1371/journal.pgen.1006812.t004

Table 5. Comparison of Levene’s test Pv ranks from different centiles of the Pm rank-ordered distribution for the index traits.

Trait Known

SNPs

Min Pm from

100th centile

Max Pm

from 100th

centile

Median Pv

rank for

100th

centile

Median Pv

rank for

99th-1st

centiles

Mann-

Whitney P-

value

Min Pm

from 99th

centile

Max Pm

from 99th

centile

Median Pv

rank for

99th

centile

Median Pv

rank for

98th-1st

centiles

Mann-

Whitney

P-value

BMI Included 4.78×10−91 5.82×10−3 58.82 49.93 1.46×10−5 5.86×10−3 1.85×10−2 52.79 49.91 0.42

BMI Excluded 3.59×10−6 8.56×10−3 55.78 49.95 4.30×10−4 8.73×10−3 2.18×10−2 52.60 49.93 0.36

HDL-C Included 3.56×10−573 6.48×10−3 51.49 49.99 0.47 6.48×10−3 1.67×10−2 50.49 49.98 0.92

HDL-C Excluded 6.68×10−11 9.94×10−3 51.45 49.99 0.77 9.95×10−3 2.09×10−2 51.06 49.98 0.47

LDL-C Included 3.80×10−143 7.14×10−3 53.11 49.98 0.52 7.18×10−3 1.75×10−2 48.44 49.99 0.85

LDL-C Excluded 2.03×10−11 9.88×10−3 53.42 49.97 0.38 9.90×10−3 2.09×10−2 48.37 49.99 1.00

TG Included 2.23×10−113 8.18×10−3 53.73 49.98 0.32 8.19×10−3 1.92×10−2 52.42 49.95 0.63

TG Excluded 1.00×10−10 1.06×10−2 51.27 49.99 0.64 1.06×10−2 2.21×10−2 53.23 49.95 0.41

TC Included 1.41×10−107 5.85×10−3 52.03 49.98 0.32 5.87×10−3 1.49×10−2 51.21 49.97 0.62

TC Excluded 3.11×10−11 9.14×10−3 49.43 50.01 0.66 9.15×10−3 1.91×10−2 50.12 50.01 0.93

BMI: body mass index; HDL-C: low-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; SNP: single nucleotide polymorphism; TC:

total cholesterol; TG: triglycerides; Pv: Variance (Levene’s) test P-value; Pm: marginal (linear regression) test P-value

https://doi.org/10.1371/journal.pgen.1006812.t005
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To assess whether a trait with a non-normal distribution (e.g. BMI) or strong marginal

associations could cause spurious association between the marginal and variance signals, we

recapitulated the analysis pipeline (correlation analysis, enrichment analysis, comparisons of

rank Pm and Pv values) in simulations described in the Materials and Methods. Careful assess-

ment of results emanating from these simulations did not reveal evidence of type I error infla-

tion caused by the non-normal distribution of an outcome trait nor strong marginal effects.

For instance, we extracted correlation P-values of Pm, Pv and Pint generated from 5,000 simula-

tions. QQ-plots of the 5,000 correlation P-values, 2,500 binomial P-values, and 2,500 Mann-

Whitney U test P-values revealed no inflation (S1A–S1C Fig, S2A and S2B Fig and S3A and

S3B Fig, respectively). Repeating these analyses on subsets of SNPs with low Pm values did not

materially change the results.

Discussion

Collectively, our analyses highlight a few variants with genome-wide significant marginal

effects that may be strong candidates for G×E interactions owing to their strong concurrent

variance heterogeneity P-values. For BMI, such SNPs are also overrepresented in the nomi-

nally significant part of the Pv distribution. FTO is an excellent example, as it conveys strong

marginal effects [13], exhibits high between-genotype heterogeneity here (Tables 2 and 3 and

Fig 1B) and elsewhere [5], and reportedly interacts with physical activity, diet and other life-

style exposures [2,14,15] and is associated with macronutrient intake [16,17].

Although variance heterogeneity tests are potentially powerful screening tools for G×E

interactions, like most interaction tests, they may be bias prone. For example, apparent differ-

ences in phenotypic variances across genotypes may be caused by scaling, particularly when

the phenotypic means also differ substantially [18], such that the per-genotype means and vari-

ances for index traits are correlated. However, where necessary we transformed variables, and

the correlations between Pm and Pv were generally weak, excluding this as a likely source of

bias. Using simulated data, we investigated whether the non-normal distribution of a trait can

cause a spurious association between marginal and variance signals, which we show is highly

improbable. Through further simulations, we assessed whether SNPs with large marginal

effects inflate Pv, but observed no inflation, indicating that large genetic marginal effects do

Table 6. Comparison of marginal effects Pm ranks from different centiles of the Levene’s test Pv rank-ordered distribution for the index traits.

Trait Known

SNPs

Min Pv from

100th

centile

Max Pv

from 100th

centile

Median Pm

rank for

100th

centile

Median Pm

rank for

99th-1st

centiles

Mann-

Whitney

P-value

Min Pv

from 99th

centile

Max Pv

from 99th

centile

Median Pm

rank for

99th

centile

Median Pm

rank for

98th-1st

centiles

Mann-

Whitney

P-value

BMI Included 2.95×10−7 6.31×10−3 51.28 49.53 0.51 6.33×10−3 1.30×10−2 53.57 49.53 0.13

BMI Excluded 2.95×10−7 6.38×10−3 51.40 49.48 0.42 6.38×10−3 1.30×10−2 53.50 49.44 0.17

HDL-C Included 2.04×10−5 9.44×10−3 46.28 50.04 0.52 9.45×10−3 1.90×10−2 53.06 50.01 0.44

HDL-C Excluded 2.04×10−5 9.45×10−3 46.42 50.05 0.37 9.47×10−3 1.89×10−2 53.37 50.01 0.31

LDL-C Included 1.06×10−8 9.12×10−3 52.96 49.98 0.19 9.15×10−3 1.88×10−2 50.78 49.96 0.99

LDL-C Excluded 1.44×10−5 9.37×10−3 50.39 49.99 0.64 9.37×10−3 1.92×10−2 51.85 49.97 0.68

TG Included 2.45×10−6 8.39×10−3 48.93 50.01 0.60 8.39×10−3 1.78×10−2 51.75 50.01 0.53

TG Excluded 2.45×10−6 8.37×10−3 49.23 50.01 0.66 8.39×10−3 1.78×10−2 51.92 50.00 0.51

TC Included 3.28×10−5 1.08×10−2 51.61 49.98 0.16 1.08×10−2 2.09×10−2 50.29 49.98 0.92

TC Excluded 3.28×10−5 1.10×10−2 51.23 50.00 0.33 1.10×10−2 2.10×10−2 49.92 50.00 0.93

BMI: body mass index; HDL-C: low-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; SNP: single nucleotide polymorphism; TC:

total cholesterol; TG: triglycerides; Pv: Variance (Levene’s) test P-value; Pm: marginal (linear regression) test P-value

https://doi.org/10.1371/journal.pgen.1006812.t006
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not artificially inflate variance heterogeneity to a meaningful extent, and SNPs with low Pm
and low Pv-values are thus likely to be strong candidates for G×E interactions, at least in the

case of BMI. It might also be that combining populations from ancestral (e.g., hunter-gather-

ers) and contemporary environments increases variance heterogeneity owing to diversity in

population substructure rather than G×E interactions per se [19]. However, this seems unlikely

here, as the cohorts examined are from Westernized European-ancestry populations.

There are several additional explanations for between-genotype variance heterogeneity,

such as variance misclassification that can occur when the index variant is located within a

haplotype containing rare functional variants that convey strong marginal effects [5]. Hence,

although variance heterogeneity tests represent a useful data-reduction step, before conclu-

sions are drawn about the presence or absence of G×E interactions, index variants should be

validated by testing their interactions with explicit environmental exposures, as we did here

with smoking and physical activity. However, genome-wide G×E interactions datasets are not

comprised of functionally validated G×E interactions, as no such resource is currently avail-

able for human complex traits. This limitation inhibits the extent to which causal effects can be

attributed to the top-ranking loci and their interactions with smoking or physical activity.

We conclude that the common approach of prioritizing loci with established genome-wide

significant association signals without further discrimination for G×E interaction analyses

might be useful, but the efficiency of such analyses could be substantially improved by focusing

on variants with low P-values for both variance heterogeneity and marginal effects. We provide

these rankings here to facilitate this approach.

Materials and methods

A detailed project flow-chart is shown in Fig 2.

Study sample

We performed a genome-wide search for SNPs whose associations with the following traits are

characterized by high between-genotype variance heterogeneity: BMI, TC, TG, HDL-C and

LDL-C. The variance heterogeneity analyses were performed using Levene’s test [20] in up to

Fig 2. Data flow-chart. Three sources of genome-wide results were used: i) meta-analysis of Levene’s test

results for between-genotype heterogeneity of phenotypic variances; ii) published results for marginal effects

genome-wide association studies undertaken by the GIANT and GLGC consortia; iii) published results for

SNP × physical activity and SNP × smoking in BMI (from the GIANT consortium).

https://doi.org/10.1371/journal.pgen.1006812.g002
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44,211 participants of European descent from seven population-based cohorts. Descriptions of

these cohorts are presented in S2 Table. To minimize bias that might result from unequal sam-

ple sizes between SNPs when calculating the correlations between the P-values from the mar-

ginal (Pm) and variance heterogeneity (Pv) meta-analyses, we restricted the sample size for

analyses to 26,000 participants for BMI and to 24,000 participants for lipid traits (S4 Fig).

Genotyping and imputation

A detailed summary of sample sizes, genotyping platforms, genotype calling algorithms, sam-

ple and SNP quality control filters, and analysis software for all participating cohorts are pro-

vided in S2 and S3 Tables. For each individual, SNPs were imputed using the CEU reference

panel of HapMap II [7] (S2 Table). We excluded SNPs with low imputation quality (below 0.3

for MACH, 0.4 for IMPUTE, and 0.8 for PLINK imputed data), Hardy-Weinberg equilibrium

P<10−6, directly genotyped SNP call rate< 95%, and minor allele frequency (MAF) < 1%.

Selection of SNPs identified through GWAS

We identified SNPs that have been robustly associated (P<5x10-8) with the five cardiometa-

bolic traits in European ancestry populations: 77 SNPs associated with BMI discovered by

GIANT [9]; and 58 SNPs associated with LDL-C, 71 SNPs associated with HDL-C, 74 SNPs

associated with TC, and 40 SNPs associated with TG [10,11] discovered by GLGC.

Variance heterogeneity analyses

We used Levene’s test [20] to identify SNPs that show heterogeneity of phenotypic variances

(σi2) across the three genotype groups at each SNP locus (i = 0, 1, or 2). We first log10 trans-

formed all five traits followed by a z-score transformation by subtracting the sample mean and

dividing by the sample standard deviation (SD), and further Winsorized the z-score values at 4

SD. The transformed phenotype Y was then used to calculate Z, defined by the absolute devia-

tion of each participant’s phenotype from the sample mean of his or her respective genotype

group at a given SNP locus. For each trait, participating cohorts provided the necessary sum-

mary statistics for each genotype at each marker [8]. Specifically, the per genotype group

counts (n0s, n1s, n2s), per genotype means (�Z0s;
�Z1s;

�Z2s), and per genotype group variances of Z
(σ0s

2,σ1s
2,σ2s

2) were centrally collected and meta-analyzed. The minimum number of observa-

tions per genotype group required is 30 participants per cohort.

Meta-analyses were performed using the following formula, derived previously [8]:

L ¼
ðN � 3Þ

ð3 � 1Þ
�

ð
X2

i¼0
gi � ð

X

s
�Zis � oisÞ

2
� ð
X2

i¼0

X

s
�Zis � ois � giÞ

2
Þ

X2

i¼0
ð
X

s
ðsZis

2 � ois �
sZis

2

N � gi
þ �Zis

2 � oisÞ � gi � ðð
X

s
�Zis � oisÞ

2
� giÞÞ

Where N is the combined sample size, �Zis and sZis
2 are the sample mean and variance of

Z in the ith genotype group of the sth study, respectively. When combining summary-level data

to calculate the Levene’s test statistics L, the following natural weights ωis and γi were calcu-

lated: ois ¼
nisX

s
nis

and gi ¼
ni
N, where ni the sum of genotype counts in the ith genotype group

across all participating cohorts. These weights are determined by the frequency of the marker

amongst the cohorts, such that the sum of both weights is equal to 1, i.e.
X

s
ois ¼ 1 and

X

i
gi ¼ 1. The meta-analysis Levene’s test P-value is obtained by comparing L to an F-distri-

bution with df1 = 2 and df2 = N-3.
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Comparison between marginal effects and variance heterogeneity P-

values

Marginal effects P-values for BMI and the relevant lipid traits were obtained from publically

available GWAS summary data from the GIANT [9] and GLGC [10,11] consortia, respectively

(all cohorts included here in the Levene’s meta-analysis were also included in the GIANT and

GLGC datasets).

To illustrate our findings, we rank-ordered the P-values (from lowest to highest) from both

marginal effects and variance effects analyses for all 1,927,671 SNPs so that the lowest P-value

for a given trait was assigned a rank equal to the lowest 100th centile. These rank-scaled distri-

butions for Pm for all five traits are presented in Fig 1.

We calculated Spearman’s correlations for each of the five cardiometabolic traits between

Pm and Pv. This was done using a pruned set of SNPs. Pruning was performed in the Twin-

Gene cohort using the--indep-pairwise 50 5 0.1 command in PLINK [21] by calculating LD (r2)
for each pair of SNPs within a window of 50 SNPs, removing one of a pair of SNPs if r2>0.1;

we proceeded by shifting the window 5 SNPs forwards and repeating the procedure. Spear-

man’s correlations were computed for categories of SNPs: i) all pruned SNPs, ii) the subset of

SNPs that was nominally significant (Pm<0.05) in the marginal effects analysis, iii) the subset

of SNPs with Pm<10−4 in the marginal effects analysis, and iv) SNPs that were previously

established in conventional marginal effects GWAS meta-analyses (Pm<5×10−8). We also

compared Spearman’s correlations between these categories of SNPs using the test for equality

of two correlations [22].

Next, we performed enrichment analyses to test if there was a higher number of established

SNPs in the nominally significant variance P-value (Pv<0.05) distribution than expected by

chance under the binominal distribution.

We also tested if there is a difference in Pv ranks for SNPs from the lowest 100th centile of

the Pm rank-ordered distribution for all five traits and the rest of SNPs in the pruned set of

SNPs using the Mann–Whitney U test, including and excluding established SNPs (or SNPs

that were +/-500kb from the reported lead SNP). This analysis was repeated for SNPs from the

99th centile vs SNPs from 1st to 98th centiles of the Pm rank-ordered distribution. The same

Mann–Whitney U tests were used to study differences in Pm ranks for SNPs from the lowest

100th and 99th centiles of the Pv rank-ordered distribution and the rest of SNPs in the pruned

set of SNPs.

All analyses were performed using Stata 12 (StataCorp LP, TX, USA), unless specified

otherwise.

SNP × Physical activity and SNP × Smoking interaction analyses for the

outcome of BMI

We used now published data from 210,316 European-ancestry adults (from the GIANT con-

sortium) pertaining to marginal effects meta-analyses for BMI that had been performed sepa-

rately by strata of smoking (45,968 smokers vs. 164,355 non-smokers) [23]. The genetic

marginal effect estimates, calculated separately within each of the two strata, were compared

using a heterogeneity test [12] to infer the presence or absence of SNP × smoking interaction

effects. The same analyses were performed using physical activity as a binary stratifying vari-

able in up to 180,287 European-ancestry adults (42,065 physically active vs. 138,222 physically

inactive) [24]. We calculated Spearman correlations between the P-values derived from the

marginal effects meta-analysis and the Pint from the interaction effects meta-analysis (i.e., the

between-strata heterogeneity test for SNP × smoking and SNP × physical activity interactions

from the GIANT consortium); these tests were undertaken for all SNPs and those SNPs that
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were nominally significant (Pm<0.05) in the marginal effects analysis. We then performed

enrichment analyses to test if the numbers of nominally significant (Pint<0.05) GWAS-derived

SNPs from both SNP × physical activity and SNP × smoking analyses were greater than

expected by chance under the binomial distribution. We further calculated the OR of having

Pint<0.05 given Pv<0.05 versus Pv�0.05 both SNP × physical activity and SNP × smoking inter-

action analyses in a pruned set of TwinGene SNPs produced using the—indep-pairwise 50 5
0.8 command in PLINK [21].

Thereafter, we calculated the average rank for each SNP’s ranking on the Pint rank-ordered

distributions from the SNP × smoking and SNP × physical activity interaction analyses and per-

formed enrichment analysis using these average ranks with>95th centile instead of Pint<0.05

as the cut-off.

Simulations

We simulated genetic data for 44,000 individuals from a pruned set of 50,335 SNPs with allele

frequencies, effect estimates and Pm values drawn from the GIANT consortium. We generated

an outcome trait by summing the products of the simulated allele counts and effect estimates

over all SNPs for each individual, and subsequently added a randomly generated non-normal

error term such that the trait resembles the observed distribution of the transformed BMI trait

used in the main (real data) analyses. We also simulated a fixed binary interacting factor with

30% prevalence. Using this simulated dataset, we calculated Pm, Pv and Pint values for each

SNP and undertook i) pairwise Spearman correlation analyses between Pm, Pv and Pint values

(5,000 simulations), ii) enrichment analysis using binomial tests (2,500 simulations) and iii)

Mann-Whitney U tests to determine systematic differences in Pv and Pm ranks (2,500 simula-

tions). Following the same pipeline, we created additional simulated datasets narrowing down

SNPs to i) those with Pm values from the lowest percentile (n = 504; highest Pm = 5×10−3) and

to ii) genome-wide significant SNPs (n = 71; Pm<5×10−8), and tested the pairwise Spearman

correlation for Pm, Pv and Pint values (1,000 simulations for both sets). Simulations were run

using the statistical software R (v. 3.3.2).[25]

Supporting information

S1 Fig. A: Quantile-quantile plot of Spearman correlation test P-values for ranks of Pm
and Pv. Quantile-quantile plot of Spearman correlation test P-values for ranks of Pm and Pv.
The figure illustrates 5,000 Spearman correlation P values testing for correlation between Pm
and and Pv values drawn from a simulated dataset of 44,000 individuals and 50,335 SNPs. In

the figure, distribution under the null hypothesis is represented as a black line while its 95%

confidence interval is represented as dashed gray lines. The dashed red line represents the cor-

relation P value obtained from the “real data” analysis presented in the main text. B. Quantile-

quantile plot of Spearman correlation test P-values for ranks of Pm and Pint. Quantile-quan-

tile plot of Spearman correlation test P-values for ranks of Pm and Pint. The figure illustrates

5,000 Spearman correlation P values testing for correlation between Pm and and Pint values

drawn from a simulated dataset of 44,000 individuals and 50,335 SNPs. In the figure, distribu-

tion under the null hypothesis is represented as a black line while its 95% confidence interval is

represented as dashed gray lines. C. Quantile-quantile plot of Spearman correlation test P-

values for ranks of Pint and Pv. Quantile-quantile plot of Spearman correlation test P-values

for ranks of Pint and Pv. The figure illustrates 5,000 Spearman correlation P values testing for

correlation between Pint and and Pv values drawn from a simulated dataset of 44,000 individu-

als and 50,335 SNPs. In the figure, distribution under the null hypothesis is represented as a
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black line while its 95% confidence interval is represented as dashed gray lines.

(TIF)

S2 Fig. A. Quantile-quantile plot of binomial test P-values for enrichment of variants with

Pv<0.05 among variants with Pm<0.05. Quantile-quantile plot of binomial test P-values for

enrichment of variants with Pv<0.05 among variants with Pm<0.05. The figure illustrates

2,500 binomial P values testing for enrichment of variants with Pv<0.05 among all variants

with Pm<0.05. Pv and and Pm values drawn from a simulated dataset of 44,000 individuals and

50,335 SNPs. In the figure, distribution under the null hypothesis is represented as a black line

while its 95% confidence interval is represented as dashed gray lines. B. Quantile-quantile

plot of binomial test P-values for enrichment of variants with Pv<0.05 among variants

with Pint<0.05. Quantile-quantile plot of binomial test P-values for enrichment of variants

with Pv<0.05 among variants with Pint<0.05. The figure illustrates 2,500 binomial P values

testing for enrichment of variants with Pv<0.05 among all variants with Pint<0.05. Pv and and

Pint values drawn from a simulated dataset of 44,000 individuals and 50,335 SNPs. In the fig-

ure, the distribution under the null hypothesis is represented as a black line while its 95% con-

fidence interval is represented as dashed gray lines. The dashed red line represents the

correlation P value obtained from the “real data” analysis presented in the main text.

(TIF)

S3 Fig. A. Quantile-quantile plot of Mann-Whitney U test P-values for systematic differ-

ences in Pv ranks among variants with top ranking and lower ranking Pm values. Quantile-

quantile plot of Mann-Whitney U test P-values for systematic differences in Pv ranks among

variants with top ranking and lower ranking Pm values. The figure illustrates 2,500 Mann-

Whitney U P values testing for systematic differences in Pv ranks among those variants with

the most significant Pm values (100th percentile of Pm distribution) and the remaining variants

(1–99 percentile of Pm distribution). Pv and and Pm values drawn from a simulated dataset of

44,000 individuals and 50,335 SNPs. In the figure, distribution under the null hypothesis is

represented as a black line while its 95% confidence interval is represented as dashed gray

lines. The dashed red line represents the correlation P value obtained from the “real data” anal-

ysis presented in the main text. B. Quantile-quantile plot of Mann-Whitney U test P-values

for systematic differences in Pm ranks among variants with top ranking and lower ranking

Pv values. Quantile-quantile plot of Mann-Whitney U test P-values for systematic differences

in Pm ranks among variants with top ranking and lower ranking Pv values. The figure illus-

trates 2,500 Mann-Whitney U P values testing for systematic differences in Pm ranks among

those variants with the most significant Pv values (100th percentile of Pv distribution) and the

remaining variants (1–99 percentile of Pv distribution). Pv and and Pm values drawn from a

simulated dataset of 44,000 individuals and 50,335 SNPs. In the figure, distribution under the

null hypothesis is represented as a black line while its 95% confidence interval is represented as

dashed gray lines. The dashed red line represents the correlation P value obtained from the

“real data” analysis presented in the main text.

(TIF)

S4 Fig. Quantile-quantile plots of Levene’s test P-values for SNP associations with lipid

traits and BMI. Associations between SNPs and BMI (A), LDL (B), HDL (C), TG (D), TC (E)

are presented. Only SNPs with N� 26,000 samples for BMI and N� 24,000 for lipid traits are

shown. In each sub-figure, distribution under the null hypothesis is represented as a black line

while its 95% confidence interval is represented as dashed gray lines.

(TIF)
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S1 Table. Detailed results for known BMI, LDL-C, HDL-C, TG and TC loci.

(XLSX)
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