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Meta-analysis of Gene-Level Associations
for Rare Variants Based on Single-Variant Statistics

Yi-Juan Hu,1 Sonja I. Berndt,2 Stefan Gustafsson,3 Andrea Ganna,3,4 Genetic Investigation of
ANthropometric Traits (GIANT) Consortium, Joel Hirschhorn,5,6,7 Kari E. North,8 Erik Ingelsson,3,9

and Dan-Yu Lin10,*

Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associatedwith complex

human diseases. There is a growing recognition that identifying ‘‘causal’’ rare variants also requires large-scale meta-analysis. The fact

that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges

in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level

tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To

overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis

(i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight

that multivariate statistics can be recovered from single-variant statistics, together with the correlation matrix of the single-variant test

statistics, which can be estimated from one of the participating studies or from a publicly available database.We show both theoretically

and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint anal-

ysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all

commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits

(GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available.
Introduction

Meta-analysis, which combines summary statistics from a

series of independent studies, plays an increasingly impor-

tant role in human genetics research.1–3 Obtaining sum-

mary statistics is much more appealing than collecting

individual participant data because it protects the privacy

of study participants, avoids cumbersome integration of

genotype and phenotype data from different studies, and

increases the number of available studies. In addition,

meta-analysis of summary statistics is statistically as

efficient as joint analysis of individual participant data.4,5

Thus, meta-analysis has become a norm in GWASs, result-

ing in the discoveries of numerous common variants

associated with complex human diseases.

Recent advances in next-generation sequencing technol-

ogies have made it possible to extend association studies to

rare variants, which are expected to have larger effects on

complex human diseases than common variants.6,7 To

enrich association signals and reduce the penalty of multi-

ple testing, investigators typically perform gene-level asso-

ciation tests by aggregating the mutation information of

the rare variants within a gene. The simplest approach is

the burden test, which calculates a single burden score

for each subject by taking a weighted sum of the mutation
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counts over the variant sites with weights dependent on

minor allele frequencies (MAFs) and assesses the disease

association with the burden score.8–12 A second approach

is the variable threshold (VT) method, which performs a

burden test by aggregating the variants whose MAFs are

lower than a threshold and minimizes the p value over

observed MAF thresholds.11,12 A third approach is the

variance-component testing, which is aimed at detecting

the presence of both deleterious and protective variants

in the same gene.13–15 Gene-level tests for rare variants

have limited power because only a small fraction of study

subjects carry any mutation within a gene and there are

high background rates of neutral variation even in

‘‘causal’’ genes. Thus, there is a growing recognition that

identifying ‘‘causal’’ rare variants would require large-scale

meta-analysis.

It is much more challenging to perform meta-analysis of

rare variants than to do so with common variants. First,

different studies may adopt different types of gene-level

tests, so the test results are not compatible. Second, even

if the same type of test is adopted, different studies may

use different gene annotations, different classes of vari-

ants, or different MAFs. Third, meta-analysis is restricted

to the specific gene-level test results provided by the

participating studies and there is no flexibility to perform
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other tests. Fourth, VT and variance-component tests are

multivariate in nature, so the meta-analysis requires multi-

variate summary statistics (i.e., the components of the test

statistic and their covariance matrix); combining the

p values of multivariate tests would lose power. Although

these difficulties may be alleviated by following a common

protocol in a well-organized consortium, the tremendous

effort required to execute such a protocol will seriously

limit the use of meta-analysis.

To circumvent these problems, we propose to collate

only the results of single-variant analysis from partici-

pating studies and leave the choices of the gene-level

test, annotation, variant class, and MAFs to the discretion

of the meta-analyst. This attractive strategy is possible

because of two important insights. First, all commonly

used gene-level test statistics can be constructed from the

score vector and the corresponding information matrix

for testing the global null hypothesis that none of the var-

iants in the gene is associated with the disease phenotype.

Second, the score vector and information matrix can be

recovered from the single-variant results, namely the

p values based onWald, score, or likelihood-ratio (LR) tests

and the effect estimates, together with the correlation

matrix of the single-variant test statistics. The correlation

matrix can be estimated from one of the participating

studies, perhaps the study that the meta-analyst is directly

involved with. If such a study is not available, the cor-

relation matrix can be approximated by the correlation

matrix of the genotypes from a publicly available database,

such as the 1000 Genomes, HapMap, or NHLBI Exome

Sequencing Project (ESP).16–18 We show both theoretically

and numerically that the proposedmeta-analysis approach

provides accurate control of the type I error and is as

powerful as joint analysis of individual participant data.

This approach can accommodate any disease phenotype

and any study design and produce all commonly used

gene-level tests.

The proposed approach not only greatly facilitates meta-

analysis of sequencing studies but also provides a way to

exploit the massive GWAS data. Many GWASs have

focused on common variants but have also produced

single-variant results for rare and low-frequency variants,

which have seldom been exploited. Our approach can be

used to combine such single-variant results and perform

gene-level association tests. Single-variant results are

available in NCBI’s database of Genotypes and Phenotypes

(dbGaP) and can be freely accessed without applying for

controlled access to individual participant data. Thus, the

proposed approach is far more useful than any methods

that require multivariate summary statistics or individual

participant data.

This work was motivated by the GIANT project.19,20 The

GIANT consortium successfully identified a number of

common variants for anthropometric traits.19,20 It also

collected single-variant summary results for rare and low-

frequency variants. Single-variant meta-analysis of those

results would have little power. Therefore, we wished to
The Amer
conduct gene-based meta-analysis for those variants.

Because the consortium involved a very large number of

cohorts, it would not be feasible to ask individual investi-

gators to perform gene-level association tests and provide

multivariate summary statistics. Therefore, we applied

the proposed methods to the existing single-variant

summary results by using one of the participating cohorts,

the Atherosclerosis Risk in Communities (ARIC) Study,21 as

the internal reference. We identified several genes con-

taining variants for extreme height that were not detect-

able by single-variant meta-analysis.
Material and Methods

Suppose that we are interested in m rare variants within a gene.

(We use the term ‘‘rare variants’’ to encompass both low-frequency

and truly rare variants.) The genotypes are represented by

G ¼ ðG1;.;GmÞT, where Gj is the number of minor alleles at the

jth variant site. Let Y denote the trait of interest, which can be

continuous or discrete, and let X denote a set of covariates (e.g.,

demographical variables and principal components for ancestry)

plus the unit component. We relate Y to G and X through a gener-

alized linear model by specifying the conditional density function

of Y given G and X as

exp

�
y
�
bTGþ gTX

�� b
�
bTGþ gTX

�
aðfÞ þ cðy;fÞ

�
; (Equation 1)

where b ¼ ðb1;.; bmÞT and g are regression parameters, f is a

dispersion parameter, and a, b, and c are specific functions. Denote

b0ðzÞ ¼ dbðzÞ=dz and b00ðzÞ ¼ d2bðzÞ=dz2. For the linear model,

aðfÞ ¼ s2, bðzÞ ¼ ð1=2Þz2, b0ðzÞ ¼ z, and b00ðzÞ ¼ 1. For the logistic

regression model, aðfÞ ¼ 1, bðzÞ ¼ logð1þ ezÞ, b0ðzÞ ¼ ez=ð1þ ezÞ,
and b00ðzÞ ¼ ez=ð1þ ezÞ2.
For a study with n unrelated subjects, the data consist of

ðYi;Gi;XiÞ ði ¼ 1;.;nÞ. The score statistic for testing the null

hypothesis H0 : b ¼ 0 is

U ¼ a
�bf��1Xn

i¼1

�
Yi � b0�bgTXi

��
Gi;

where bg and bf are the restricted maximum likelihood estimators

(MLEs) of g and f under H0. For the linear model, bg ¼
ðPn

i¼1XiX
T
i Þ�1Pn

i¼1YiXi and aðbfÞ ¼ bs2 ¼ n�1
Pn

i¼1ðYi � bgTXiÞ2.
Under H0, U is asymptotically m-variate normal with mean

0 and covariance matrix

V ¼ a
�bf��1

"Xn
i¼1

b00�bgT
Xi

�
GiG

T
i �

(Xn
i¼1

b00
�bgT

Xi

�
GiX

T
i

)

�
(Xn

i¼1

b00
�bgTXi

�
XiX

T
i

)�1(Xn
i¼1

b00
�bgTXi

�
XiG

T
i

)#
;

(Equation 2)

which is the information matrix evaluated at b ¼ 0, g ¼ bg, and
f ¼ bf.
Suppose that we wish to combine the results of L independent

studies. For l ¼ 1;.;L, let UðlÞ and VðlÞ denote the values of U

and V from the lth study. It is not necessary for all m variants to

be present in all studies. If the lth study contains no mutation at

a particular variant site, we simply set the corresponding entries

in U ðlÞ and V ðlÞ to 0. Define
ican Journal of Human Genetics 93, 236–248, August 8, 2013 237



U ¼
XL
l¼1

U ðlÞ;V ¼
XL
l¼1

V ðlÞ:

Under H0, U is asymptotically m-variate normal with mean 0

and covariance matrix V . If we allow g and f of Equation 1 to

be different among the L studies, then U is exactly the score

statistic for testing H0 in the joint likelihood of the individual

participant data of the L studies.5 Thus, meta-analysis based on

score statistics is equivalent to joint analysis of individual partici-

pant data.

GivenU andV, we can construct all commonly used gene-based

association tests for rare variants. Specifically, define the

(weighted) burden score xTG, where x is an m-vector of weights

that depend on the MAFs.8–12 The score statistic for testing the

disease association with the burden score can be expressed as

~U ¼ xTU, whose variance is ~V ¼ xTVx.12 The test statistic

T ¼ ~U=~V
1=2

is referred to the standard normal distribution. If

we are interested in K burden scores with vectors of weights

x1;.; xK, then we calculate ~Uk ¼ xTkU ðk ¼ 1;.;KÞ. Under the

null hypothesis of no association, ð~U1;.; ~UKÞT is asymptotically

K-variate normal with mean 0 and covariance matrix

f~Vkl; k; l ¼ 1;.;Kg, where ~Vkl ¼ xTkVxl. The p value for the

maximum statistic Tmax ¼ maxk¼1;.;K

���~Uk

���=~V1=2

kk is determined

by the multivariate normal distribution of ð~U1;.; ~UKÞT.12 The

SKAT statistic can be written as Q ¼ U
T
WU; whereW is a diagonal

weight matrix that depends on the MAFs through a beta func-

tion.15 The null distribution of Q is determined by
Pm

j¼1ljc
2
1;j;

where l1;.; lm are the eigenvalues of V
1=2

WV
1=2

and

c2
1;1;.;c2

1;m are independent c2
1 random variables.

The abovemeta-analysis approach is predicated on the availabil-

ity of U and V for each study. Note that U is anm3 1 vector and V

is an m 3 m matrix. Such multivariate summary statistics are not

available in published papers or public databases. Even for a

well-organized consortium, it is logistically difficult to generate

such multivariate summary statistics. We show below that it is

possible to recover U and V for each study from the (univariate)

single-variant statistics provided that the correlation matrix of U

can be estimated from an internal or external reference panel.

For each study, let Uj denote the jth component of U and Vjl

denote the ðj; lÞth element of V. Let Zj denote the standard-normal

statistic for testing the null hypothesis Hj : bj ¼ 0 under Equation

1 with bTG replaced by bjGj. For the score, Wald, and LR tests, Zj

takes the forms of Uj=V
1=2
jj , bbj=sej, and signðbbjÞ

ffiffiffiffiffiffi
LR

p
, respectively,

where bbj is the MLE of bj, sej is the standard error of bbj, and LR is

the likelihood ratio statistic. The three forms of Zj are asymptoti-

cally equivalent. When Uj is not available but Zj is, we approxi-

mate Uj by bUj ¼ wjZj;

where wj is an approximation to V
1=2
jj . Write bU ¼ ðbU 1;.; bUmÞT,

which is asymptoticallym-variate normal withmean 0 and covari-

ance matrix bV ¼ f bVjl; j; l ¼ 1;.;mg, where

bV jl ¼ wjRjlwl;

and R ¼ fRjl; j; l ¼ 1;.;mg is the covariance or correlation matrix

of ðZ1;.;ZmÞT. We substitute bU and bV for U and V in each study

and perform the aforementioned gene-based association tests. If Zj

is the score test and wj ¼ V
1=2
jj , then bU j ¼ Uj. If Zj is the Wald or LR

test or wjsV
1=2
jj , then bU jsUj; however, meta-analysis based on bU
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and bV will still have correct type I error as long as the correlation

matrix R is correctly estimated for each study.

We show in Appendix A that the correlation matrix R is deter-

mined primarily by the correlation matrix of G. Specifically, two

studies with the same correlation matrix of G will have the same

R if covariates are absent or independent of genotypes and will

have approximately the same R even if covariates are correlated

with genotypes. Thus, we can use the value of R from one study

to approximate the values of R in other studies with similar linkage

disequilibrium (LD) structures. We refer to such a study as the

internal reference. If no internal reference is available, we resort

to an external reference panel such as the HapMap, 1000

Genomes, or ESP.16–18 It is desirable to use an internal or external

reference panel that has the same ancestry as the target study to

ensure similar LD structures.

We assume that the summary statistics that are available for

meta-analysis contain the parameter estimates and p values of

individual variants, i.e., ðbbj; pjÞ ðj ¼ 1;.;mÞ, for each study, where

pj is the (two-sided) p value based on theWald, score, or LR test.We

recover the test statistic Zj by signðbbjÞF�1ð1� pj=2Þ, where F is the

standard-normal distribution function. (We replace pj=2 by pj in

the formula if the p value is based on a one-sided test.)

The standard error estimates sejs are usually contained in the

summary results. If not, we recover sej by bbj=Zj. This approxima-

tion is exact if Zj is the Wald statistic and is accurate if Zj is the

score or LR statistic. Recall that sej is the standard error estimate

of bbj and thatVjj is the variance estimate ofUj. It is reasonable to set

wj ¼ 1=sej because 1=sej is the same as V
1=2
jj except that the infor-

mation matrix used to calculate sej is evaluated at the MLEs of

bj, g, and f whereas the information matrix used to calculate Vjj

is evaluated at b ¼ 0 and the restricted MLEs of g and f. For rare

variants, the sejs may be unstable. If an internal reference study

is available, we may set wj ¼ fðn=n�ÞV�
jjg1=2, where n� and V�

jj are

the values of n and Vjj for the reference study, the reason being

that Vjj is approximately proportional to the sample size when

the trait variance (for continuous Y) or the case-control ratio (for

binary Y) is fixed. If the trait variances or the case-control ratios

are possibly different between the reference and target studies,

we replace ðn=n�Þ1=2 by the median of fðse�l =selÞ; l ¼ 1;.;Mg,
where M is the total number of variants that are genotyped and

se�l is the value of sel in the reference study. The median provides

a stable estimate for the ratio of the two standard errors, allowing

the trait variances or the case-control ratios to be different

between studies. If no internal reference is available, we set

wj ¼ ðseyj Þ�13medianl¼1;.;Mðseyl =selÞ, where seyl is the value of sel
in the largest study of the meta-analysis.

In short, the summary results contain minimally the p values

and effect estimates, from which we recover the standard-normal

statistics. The standard error estimates are optional.When they are

not available, we set sej ¼ bbj=Zj. If an internal reference is avail-

able, we set wj ¼ V�1=2
jj 3medianl¼1;.;Mðse�l =selÞ and estimate R by

the correlation matrix of the score statistics in the internal refer-

ence; otherwise, we set wj ¼ ðseyj Þ�13medianl¼1;.;Mðseyl =selÞ and

estimate R by the correlation matrix of the SNP genotypes in the

external reference.
Results

Simulation Studies

We carried out extensive simulation studies to evaluate the

performance of the proposed methods in realistic settings.
, 2013



Table 1. Correlation Matrices for OR2T29

Correlation Matrix of Genotypes

rs142202454 rs199706827 rs200777722 rs200169450 rs201345491 rs200919674 rs201896684

rs142202454 1 0.141 �0.003 0.129 0.109 0.110 0.120

rs199706827 1 0.292 0.656 0.541 0.523 0.581

rs200777722 1 0.128 �0.007 �0.007 0.025

rs200169450 1 0.496 0.555 0.799

rs201345491 1 0.829 0.613

rs200919674 1 0.672

rs201896684 1

Correlation Matrix of Test Statistics with Case-Control Ratio of 1

rs142202454 rs199706827 rs200777722 rs200169450 rs201345491 rs200919674 rs201896684

rs142202454 1 0.136 �0.004 0.124 0.104 0.104 0.115

rs199706827 1 0.293 0.646 0.531 0.511 0.568

rs200777722 1 0.125 �0.012 �0.012 0.020

rs200169450 1 0.483 0.543 0.793

rs201345491 1 0.825 0.602

rs200919674 1 0.663

rs201896684 1

Correlation Matrix of Test Statistics with Case-Control Ratio of 2

rs142202454 rs199706827 rs200777722 rs200169450 rs201345491 rs200919674 rs201896684

rs142202454 1 0.132 �0.004 0.120 0.101 0.101 0.111

rs199706827 1 0.292 0.640 0.524 0.504 0.562

rs200777722 1 0.124 �0.011 �0.012 0.020

rs200169450 1 0.476 0.537 0.790

rs201345491 1 0.822 0.597

rs200919674 1 0.658

rs201896684 1
To cover different MAF and LD spectrums, we chose two

genes on chromosome 1 (OR2T29 and LDLRAD1) and

focused on SNPs with MAFs <5%. According to the WHI

African-American data from the ESP,18 there are seven

SNPs in OR2T29, with MAFs of 0.003, 0.030, 0.003, 0.036,

0.017, 0.017, and 0.036 for rs142202454, rs199706827,

rs200777722, rs200169450, rs201345491, rs200919674,

and rs201896684 and genotype correlations shown in the

upper block of Table 1. This gene contains a few relatively

common SNPs that are in modest LD. There are eight

SNPs in LDLRAD1, with MAFs of 0.021, 0.001, 0.001,

0.017, 0.001, 0.007, 0.007, and 0.001 for rs143619888,

rs150468103, rs141759859, rs149768061, rs147345740,

rs145889899, rs142900519, and rs149114405 and geno-

type correlations shown in the upper block of Table 2.

This gene containsmostly rare SNPs, the correlations being

very low except for one pair. We generated the SNP geno-

types of the two genes via GWAsimulator22 to mimic the

MAFs and LD patterns observed in the ESP WHI data.
The Amer
We conducted meta-analysis of three studies with 2,000,

1,500, and 1,000 subjects, referred to as study 1, study 2,

and study 3, respectively. We considered the situations

both with and without an internal reference. For the

former, study 1 was treated as the internal reference. For

the latter, we generated an ‘‘external’’ reference panel

with 1,000 subjects (mimicking the ESP WHI data). We

simulated quantitative traits from the linear regression

model Y ¼ bSþ 0:2Xþ e and binary traits from the logistic

regression model logfPðY ¼ 1Þ=PðY ¼ 0Þg ¼ bSþ 0:2X,

where S is the total number of mutations the subject carries

in the gene, X is a normal random variable with mean 0.2S

and variance one, and ε is zero-mean normal with variance

s2. Note that X is correlated with S and may represent a

principal component for ancestry. To allow the possibil-

ities of both equal and unequal error variances among

studies, we set s2 ¼ 1:0 in study 1 and varied the values

of s2 in the other two studies. For binary traits, we obtained

an equal number of cases and controls for study 1 and
ican Journal of Human Genetics 93, 236–248, August 8, 2013 239



Table 2. Correlation Matrices for LDLRAD1

Correlation Matrix of Genotypes

rs143619888 rs150468103 rs141759859 rs149768061 rs147345740 rs145889899 rs142900519 rs149114405

rs143619888 1 0.005 0.005 0.019 0.005 0.012 0 0

rs150468103 1 0.001 0.005 0.001 0.003 0 0

rs141759859 1 0.005 0.002 0.003 0.003 0

rs149768061 1 0.005 0.639 0.011 0

rs147345740 1 0.003 0.003 0

rs145889899 1 0.007 0

rs142900519 1 0

rs149114405 1

Correlation Matrix of Test Statistics with Case-Control Ratio of 1

rs143619888 rs150468103 rs141759859 rs149768061 rs147345740 rs145889899 rs142900519 rs149114405

rs143619888 1 0.005 0.005 0.021 0.005 0.014 0.001 0.001

rs150468103 1 0.001 0.005 0.001 0.003 0 0

rs141759859 1 0.005 0.001 0.003 0.003 0

rs149768061 1 0.005 0.641 0.012 0

rs147345740 1 0.003 0.003 0

rs145889899 1 0.008 0

rs142900519 1 0

rs149114405 1

Correlation Matrix of Test Statistics with Case-Control Ratio of 2

rs143619888 rs150468103 rs141759859 rs149768061 rs147345740 rs145889899 rs142900519 rs149114405

rs143619888 1 0.006 0.006 0.021 0.006 0.014 0.001 0.001

rs150468103 1 0.001 0.005 0.001 0.003 0 0

rs141759859 1 0.005 0.001 0.003 0.003 0

rs149768061 1 0.005 0.636 0.011 0

rs147345740 1 0.004 0.003 0

rs145889899 1 0.008 0

rs142900519 1 0

rs149114405 1
varied the case-control ratios for the other two studies. As

shown in Tables 1 and 2, the correlation matrices of the

test statistics are highly similar between the case-control

ratios of 1 and 2 (middle and bottom blocks) and are also

very similar to the correlation matrix of the genotypes in

the external reference panel (upper block). These results

corroborate the theoretical results given in Appendix A.

We evaluated the proposed methods based on single-

variant statistics with an internal or external reference,

denoted as SV-I and SV-E, respectively. As a benchmark,

we included the meta-analysis method based on multivar-

iate statistics (i.e., U and V), referred to as MV, which is a

gold standard because it is equivalent to joint analysis of

original data. We also included a naive method that sets

wj to 1=sej and R to the identity matrix; the naive method
240 The American Journal of Human Genetics 93, 236–248, August 8
assumes independence among variants and thus does not

use any reference data to estimate the LD. We constructed

the burden, VT, and SKAT tests. For the burden test, we

adopted the MAF threshold of 5%, which is commonly

called T5. For SKAT, we used the default weighted linear

kernel function. We considered the p values from the

Wald, score, and LR tests.

The type I error rates for quantitative and binary traits

when the summary statistics contain the standard error

estimates are shown in Tables 3 and 4, respectively. The

corresponding results when the summary statistics do

not contain the standard error estimates are shown in

Tables S1 and S2 available online. The two sets of results

are highly similar. For quantitative traits, both SV-I and

SV-E with the score, LR, or Wald test are as accurate as
, 2013



Table 3. Type I Error Divided by the Nominal Significance Level for Quantitative Traits

Gene Test s2 MV

SV-I SV-E Naive

Score LR Wald Score LR Wald Score LR Wald

OR2T29 T5 0.5 0.97 0.98 0.99 1.00 0.96 0.97 0.98 75.83 75.98 76.15

1.0 1.00 1.01 1.01 1.02 0.98 0.98 1.00 75.69 75.85 76.00

VT 0.5 0.98 1.00 1.01 1.02 0.97 0.99 1.00 53.67 53.82 53.94

1.0 1.00 1.00 1.00 1.01 1.01 1.02 1.03 53.45 53.60 53.75

SKAT 0.5 0.97 0.95 0.97 0.98 0.95 0.96 0.98 19.27 19.38 19.49

1.0 1.00 1.01 1.01 1.02 0.99 1.00 1.01 19.20 19.29 19.37

LDLRAD1 T5 0.5 0.99 0.98 0.99 1.00 0.97 0.98 1.00 2.89 2.91 2.92

1.0 1.00 0.98 0.98 0.98 0.97 0.97 0.98 2.84 2.85 2.87

VT 0.5 1.01 1.04 1.04 1.05 1.02 1.03 1.04 2.94 2.97 2.99

1.0 1.02 1.05 1.06 1.06 1.01 1.02 1.02 2.99 3.01 3.02

SKAT 0.5 1.01 1.02 1.03 1.04 1.01 1.03 1.04 2.42 2.45 2.48

1.0 1.01 1.00 1.01 1.02 1.04 1.05 1.06 2.40 2.42 2.45

The summary statistics include the standard error estimates. The nominal significance level a¼ 0.001. s2 pertains to the error variance in studies 2 and 3. MV is the
gold standard. Each entry is based on 1,000,000 replicates.
MV. For binary traits, SV-I tends to be more accurate than

SV-E and the Wald test tends to be more conservative

than the score and LR tests, especially for LDLRAD1. The

naive method has severe inflation of the type I error,

even for LDLRAD1, which has only one pair of cor-

related SNPs.

Figures 1 and 2 compare the powers of SV-I, SV-E, and

MV for quantitative and binary traits, respectively. The

results of the naive method are not shown because it has

inflated type I error and thus would not make a fair power

comparison. For quantitative traits, both SV-I and SV-E are
Table 4. Type I Error Divided by the Nominal Significance Level for Bi

Gene Test Ratio MV

SV-I

Score LR Wald

OR2T29 T5 1.0 0.93 0.86 0.91 0.79

2.0 1.03 0.97 0.98 0.90

VT 1.0 0.93 0.87 0.93 0.77

2.0 1.04 1.01 1.00 0.88

SKAT 1.0 0.92 0.88 0.92 0.79

2.0 1.00 0.97 0.96 0.85

LDLRAD1 T5 1.0 0.88 0.81 0.88 0.70

2.0 1.03 1.05 0.99 0.88

VT 1.0 0.95 0.76 0.83 0.59

2.0 1.04 1.06 0.98 0.84

SKAT 1.0 0.90 0.81 0.92 0.63

2.0 0.93 0.91 0.93 0.68

The summary statistics include the standard error estimates. The nominal significa
gold standard. Each entry is based on 1,000,000 replicates.

The Amer
as powerful as MV. For binary traits, SV-I and SV-E tend to

be slightly less powerful than MV; SV-E loses a little more

power than does SV-I because the wjs in SV-E are not as

stable as in SV-I. However, all the power differences are

very small. The results for SV-I and SV-E shown in Figures

1 and 2 pertain to the score test. For quantitative traits,

the results based on the Wald and LR tests are virtually

identical to those of the score test (data not shown). For

binary traits, the LR test yields slightly higher power

than the score test whereas the Wald test yields slightly

lower power; see Figures S1 and S2.
nary Traits

SV-E Naive

Score LR Wald Score LR Wald

0.83 0.89 0.72 72.00 73.05 69.90

0.92 0.94 0.81 72.33 72.47 70.05

0.81 0.90 0.66 50.14 51.01 48.18

0.95 0.95 0.75 50.78 50.82 48.67

0.82 0.89 0.66 17.06 17.67 15.90

0.90 0.92 0.73 17.44 17.58 16.10

0.75 0.84 0.58 1.97 2.13 1.62

0.96 0.94 0.74 2.81 2.60 2.32

0.62 0.75 0.40 1.80 2.03 1.40

0.85 0.82 0.56 2.84 2.59 2.16

0.68 0.81 0.43 1.31 1.52 0.96

0.73 0.81 0.48 1.67 1.63 1.25

nce level a ¼ 0:001. Ratio is the case-control ratio in studies 2 and 3. MV is the

ican Journal of Human Genetics 93, 236–248, August 8, 2013 241
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Figure 1. Power of T5 at the Nominal
Significance Level a of 0.001 for Quantita-
tive Traits
s2 is the error variance for studies 2 and 3.
For SV-I and SV-E, single-variant p values
are based on the score test. Each power
estimate is based on 10,000 replicates.
We also compared our methods to Fisher’s method of

combining p values. As shown in Figure S3, our methods

are substantially more powerful than Fisher’s method.

Finally, we examined the robustness of the proposed

methods to misspecification of the reference. We simu-

lated an external reference mimicking the HeartGO Afri-

can-American data from the ESP while still simulating

studies 1–3 from the ESP WHI data. In the HeartGO data,

the eight SNPs in LDLRAD1 have MAFs of 0.011, 0,

0.001, 0.016, 0, 0.01, 0.001, and 0 and genotype correla-

tions shown in Table S3. Clearly, theMAFs and LD patterns

differ considerably between the WHI and HeartGO data.

The simulation results for the proposed method based on

single-variant statistics with the misspecified external

reference, denoted by SV-E0, are shown in Table S4 and

Figure S4. Evidently, SV-E0 has reasonable control of the

type I error and is slightly less powerful than SV-E (using

the correct external reference).

GIANT Data

The GIANT consortium is an international collaboration

that seeks to discover genetic loci that modulate human

body size and shape, including height and measures of

obesity.19 The consortium was recently interested in
242 The American Journal of Human Genetics 93, 236–248, August 8, 2013
identifying genetic loci associated

with the extremes of height, body

mass index (BMI), and waist-hip ratio

adjusted by BMI.20 The investigators

from 50 GWASs were asked to

perform case-control comparisons,

treating individuals in the highest

5th percentile of the age- and sex-

adjusted distribution as cases and

those in the lowest 5th percentile as

controls, for a total of ~2.8 million

SNPs (genotyped or imputed by the

HapMap CEU population); the anal-

ysis was stratified by sex and disease

status and adjusted by age and prin-

cipal components for ancestry. The

summary results submitted to the

consortium contain the effect esti-

mates, the standard error estimates,

and the two-sided p values of the asso-

ciation tests for individual SNPs. The

associations with common SNPs had

been assessed by single-variant meta-

analysis; however, the information
on rare variants had not yet been exploited because of

the lack of proper analysis methods. With the proposed

methods, we conducted gene-level association tests of

rare variants through meta-analysis of the single-variant

summary results, focusing on the binary trait of extreme

height.

The 50 studies involved ~160,000 cohort members of

the European ancestry, among whom ~14,600 subjects

were selected as cases or controls for extreme height. The

sample sizes ranged from 812 to 14,594, with a median

of 13,413. We had access to the original data from one of

the cohorts, the ARIC study,21 which contains 8,108

cohort members and 812 subjects with extreme height.

Because the subjects from the 50 studies are all of the

same ancestry, we used the ARIC study as the internal refer-

ence. We annotated the genes in PLINK and filtered out

SNPs with MAFs >5% to end up with 10,851 genes con-

taining at least one SNP. Thus, the genome-wide signifi-

cance threshold based on the Bonferroni correction would

be ~5 3 10�6. The qq-plots for the SV-I and naive methods

are displayed in Figure 3. The naive method yielded exces-

sive positive findings and failed to identify some of the

genes identified by the SV-I method. Although the values

of the genomic control l were ~1.1 for the SV-I tests, the
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Figure 2. Power of T5 at the Nominal
Significance Level a of 0.001 for Binary
Traits
Ratio is the case-control ratio for studies 2
and 3. For SV-I and SV-E, single-variant p
values are based on the score test. Each po-
wer estimate is based on 10,000 replicates.
modest inflation is unlikely attributed to the proposed

methods because the value of l was ~1.08 in the single-

variant meta-analysis (data not shown).

The SV-I T5 tests identified seven genes that pass the

genome-wide significance threshold of 5 3 10�6. The

results for those genes are shown in Table 5. One of the

genes (SNRPC [MIM 603522]) contains only one SNP, so

the gene-level and single-variant tests are the same. A sec-

ond gene (CRYBB1 [MIM 600929]) contains three SNPs,

oneofwhichhas apvalue that is the sameas the gene-based

p value and two of which have very large p values. A third

gene (SPEF2 [MIM 610172]) contains 15 SNPs, 9 of which

have p values similar to the gene-based p value and the

rest of which have large p values. For the remaining four

genes (ACAN [MIM 155760], CPNE1 [MIM 604205],

RBM12 [MIM 607179], and FAM134A), the gene-level

p values are smaller than the single-variant pvalues. Among

those four genes, only two have single-variant p values that

are less than 5 3 10�6. The foregoing results show that the

proposed method may boost the association signals.

The top gene in our analysis, ACAN, was previously iden-

tified by the GIANT consortium through the single-variant

meta-analysis for the full height distribution and the

extreme height;19,20 only SNP rs16942341 in this gene
The American Journal of Human G
was reported.19 None of the other

genes in Table 5 have previously

been identified to be associated with

human height. All the SNPs identified

by previous single-variant meta-

analysis20 are relatively common,

i.e., MAFs R0:15, so those SNPs

were not included in the current

gene-level analysis.

For further comparisons, we per-

formed the single-variant meta-anal-

ysis of all the ~126,000 rare variants

that were included in the gene-level

analysis. We found that 19 of them

pass the Bonferroni threshold of

0:05=126;000z4310�7. Those 19

SNPs belong to five genes (ACAN,

DIS3L2 [MIM 614184], SNRPC,

UQCC [MIM 611797], and PLAG1

[MIM 603026]), only two of which

(ACAN and SNRPC) were identified

by the gene-level meta-analysis.

Thus, the proposed approach is com-

plementary to single-variant meta-
analysis and can facilitate discoveries of rare variants for

complex human traits.
Discussion

We presented a simple strategy to performmeta-analysis of

association results for rare variants in GWASs and

sequencing studies. Our approach is very convenient and

versatile because it requires only univariate statistics from

standard single-variant analysis and accommodates any

type of study and any type of trait. Our algorithms are

very fast. It took ~2 hr on an IBMHS22machine to perform

the meta-analysis of the GIANT data. The proposed

methods are implemented in the software MAGA: Meta-

Analysis of Gene-level Associations.

Alternative methods are being pursued independently

by other research groups. To our knowledge, those

methods all require multivariate statistics (i.e., the score

vector U and the information matrix V). It is more

challenging, both theoretically and computationally, to

develop meta-analysis methods based on univariate statis-

tics. We made a key observation that multivariate statistics

can be recovered from univariate statistics provided that
enetics 93, 236–248, August 8, 2013 243



Figure 3. Quantile-Quantile Plots of
�log10(p Values) in the Meta-analysis
of the GIANT Extreme Height Studies
The genes that pass the genome-wide
significance threshold by the SV-I T5 tests
are marked. The p values <10�12 are
truncated.
the correlation matrix of the single-variant test statistics

can be determined. We rigorously justified the use of an

internal or external reference to estimate the correlation

matrix and derived statistically optimal and numerically

stable weighting schemes. From a practical point of view,

multivariate statistics can be collected only prospectively

in well-organized consortia. By contrast, our approach

requires only readily available univariate results from

single-variant analysis and is particularly attractive in the

retrospective analysis of existing studies.

Our approach requires a good estimate for the correla-

tion matrix of the single-variant test statistics. We showed
244 The American Journal of Human Genetics 93, 236–248, August 8, 2013
both theoretically and numerically

that the correlation matrix of the

test statistics is determined primarily

by the correlation matrix of the geno-

types and is not sensitive to the trait

variance, the case-control ratio, or

the distribution of covariates. The

studies to be combined need not to

be drawn from a single ancestral pop-

ulation. If the studies involve both

European and African ancestries,

then race-specific (internal or ex-

ternal) references can be used. It is

preferable to use an internal than an

external reference and to use a large

reference panel.

Our methods allow variants to be

polymorphic in only some of the

participating studies by setting the

entries in the score vector and infor-

mation matrix corresponding to a

nonpolymorphic variant to zero.

In our current implementation, we

disregard the variants that are not

polymorphic in the reference panel.

An alternative strategy is to assume

that such rare variants are indepen-

dent of others so that the correspond-

ing entries in the correlation matrix

R can be set to zero.

Meta-analysis based on score tests

performs better than that of LR or

Wald tests, especially for binary traits

with rare variants. Wemake use of the

standardized test statistics or p values

rather than the score statistics (i.e.,

components of U) and their variances
(i.e., diagonal elements of V). The latter, together with the

correlationmatrix, would completely recover themultivar-

iate statistics. We do not require score statistics and their

variances because they are not available in standard soft-

ware packages such as SAS and R. However, score statistics

and their variances can be obtained from special computer

programs, such as SCORE-Seq12 and SCORE-SeqTDS.23 We

recommend that such information be included in the sum-

mary results of single-variant analysis in the future, which

will lead to more accurate meta-analysis.

In the current practice, a variant that does not have a

valid effect estimate is excluded from the summary results



Table 5. Top Genes Identified by T5 in the SV-I Meta-analysis

Gene/SNP Chr Position MAF Effect SE p Value

ACAN 8.0 3 10�11

rs16942341 15 87189909 0.026 �0.508 0.082 3.7 3 10�10

rs16942383 15 87206056 0.034 �0.437 0.070 1.3 3 10�9

rs12385976 15 87205096 0.042 �0.358 0.060 2.6 3 10�9

rs8024016 15 87209085 0.038 �0.356 0.060 8.0 3 10�9

rs3784757 15 87204408 0.031 �0.430 0.071 1.5 3 10�8

SNRPC 3.1 3 10�8

rs9462016 6 34847768 0.046 0.263 0.055 3.1 3 10�8

CPNE1 4.9 3 10�7

rs6060540 20 33711263 0.048 0.216 0.054 7.0 3 10�5

rs17426738 20 33701348 0.047 0.219 0.055 7.0 3 10�5

rs6060536 20 33700401 0.047 0.219 0.055 7.1 3 10�5

rs926994 20 33684437 0.048 0.215 0.055 7.6 3 10�5

rs2230219 20 33682894 0.048 0.215 0.055 7.6 3 10�5

rs6121021 20 33715852 0.048 0.216 0.055 7.9 3 10�5

rs17427233 20 33709531 0.047 0.217 0.055 7.9 3 10�5

rs6058292 20 33712183 0.048 0.217 0.055 8.0 3 10�5

rs17426419 20 33693059 0.047 0.208 0.054 1.1 3 10�4

rs6121019 20 33714062 0.048 0.210 0.055 1.2 3 10�4

rs17092957 20 33715359 0.033 0.201 0.071 4.2 3 10�3

rs7272885 20 33690567 0.033 0.203 0.071 4.9 3 10�3

rs17092885 20 33693038 0.033 0.198 0.071 6.0 3 10�3

rs17092937 20 33707024 0.033 0.193 0.071 6.7 3 10�3

rs17092945 20 33708972 0.033 0.198 0.071 6.9 3 10�3

rs8050 20 33700638 0.033 0.197 0.071 7.4 3 10�3

rs17092915 20 33702884 0.033 0.196 0.071 7.4 3 10�3

rs17092869 20 33687762 0.046 0.190 0.090 1.4 3 10�2

rs2425068 20 33678137 0.045 �0.048 0.080 4.3 3 10�1

RBM12 1.1 3 10�6

Subset of CPNE1 SNPs

CRYBB1 1.1 3 10�6

rs2301439 22 25327383 0.019 �0.789 0.184 1.1 3 10�6

rs5752354 22 25332648 0.007 �0.231 0.172 4.6 3 10�2

rs7290642 22 25331364 0.010 �0.176 0.110 8.1 3 10�2

FAM134A 1.2 3 10�6

rs2293072 2 219753698 0.041 0.299 0.063 1.7 3 10�6

rs2385393 2 219757631 0.003 0.908 0.608 3.3 3 10�1

SPEF2 4.6 3 10�6

rs6862961 5 35736129 0.021 �0.392 0.088 4.3 3 10�6

rs7714298 5 35760267 0.021 �0.385 0.088 5.4 3 10�6

rs10061088 5 35759618 0.021 �0.386 0.088 5.5 3 10�6

rs10058394 5 35757834 0.021 �0.384 0.088 6.0 3 10�6

Table 5. Continued

Gene/SNP Chr Position MAF Effect SE p Value

rs10051352 5 35757747 0.021 �0.383 0.088 6.8 3 10�6

rs10071847 5 35757450 0.021 �0.383 0.088 7.6 3 10�6

rs7703587 5 35756245 0.021 �0.382 0.088 7.6 3 10�6

rs7703605 5 35756281 0.021 �0.383 0.088 8.2 3 10�6

rs6891096 5 35733720 0.021 �0.387 0.089 1.2 3 10�5

rs2361394 5 35836304 0.044 �0.013 0.017 8.7 3 10�2

rs11742689 5 35841905 0.041 �0.099 0.067 1.8 3 10�1

rs11740118 5 35714128 0.047 �0.094 0.060 2.0 3 10�1

rs7725710 5 35732941 0.023 0.117 0.174 3.3 3 10�1

rs286441 5 35673325 0.036 0.022 0.060 9.7 3 10�1

rs12514911 5 35662699 0.036 0.022 0.060 9.7 3 10�1
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file. For a case-control study, the log odds ratio cannot be

estimated if there are nomutations in either the case group

or the control group. However, such a study contains valu-

able information about the association. To solve this

dilemma, we again recommend that researchers include

the score statistics and their variances in the summary re-

sults, which can be combined efficiently in meta-analysis.

Another (less attractive) solution would be to report the p

value of an asymptotic or exact test and the direction of the

association. These two pieces of information can be used to

construct an approximate standard-normal statistic, and

the sample size and MAF can be used to estimate the vari-

ance for the weighting scheme.

Although we have focused on studies of unrelated indi-

viduals with quantitative and binary traits, the proposed

methods are applicable to other study designs and other

traits, such as family studies, extreme-trait sampling,

ordinal traits, and (potentially censored) ages at disease

onset. In addition, the proposed methods can be extended

to incorporate heterogeneous effects among studies by

defining the burden statistic as
PL

l¼1ðxðlÞTU ðlÞÞ2 and the

SKAT statistic as
PL

l¼1U
ðlÞTWðlÞUðlÞ, where xðlÞ and WðlÞ

pertain to the lth study.

In summary, we developed a simple and practical tool to

perform meta-analysis of rare variants based on single-

variant statistics. We showed both theoretically and

numerically that the proposed approach has correct type

I error and is as powerful as joint analysis of individual

participant data (provided that an appropriate reference

panel is available). With the GIANT data, we demonstrated

that the proposed approach can facilitate the discoveries of

rare variants associated with complex human traits.
Appendix A

The joint distributions of ðZ1;.;ZmÞT for the Wald, score,

and LR tests are asymptotically the same.24 Thus, it suffices

to evaluate the covariance matrix of ðZ1;.;ZmÞT in terms
ican Journal of Human Genetics 93, 236–248, August 8, 2013 245



of the correlation matrix of U. Without loss of generality,

we center the Gis at their sample mean.

In the absence of covariates, Equation 2 reduces to

V ¼ a
�bf��1

b00ðbgÞXn
i¼1

GiG
T
i ;

so the corresponding R is equal to the sample correla-

tion matrix of G. If there exist covariates but they are

independent of or weakly correlated with genetic vari-

ables, then

Vz a
�bf��1



n�1

Pn
i¼1

b00ðbgT
XiÞ
Pn
i¼1

GiG
T
i �

�
n�1

Pn
i¼1

Gi

�Pn
i¼1

b00ðbgT
XiÞXT

i

��Pn
i¼1

b00ðbgT
XiÞXiX

T
i

��1

�
�
n�1

Pn
i¼1

b00ðbgTXiÞXi

Pn
i¼1

GT
i

��
;

¼ a
�bf��1

n�1
Pn
i¼1

b00ðbgT
XiÞ
Pn
i¼1

GiG
T
i ;

where the second equality follows from the centering of

the genotype values. Thus, the corresponding R is approx-

imately equal to the correlationmatrix ofG. In conclusion,

two studies with the same LD structure will have

essentially the same correlation matrix R if there are no

covariates or if the covariates and genetic variables are

independent or weakly correlated.

We now consider the uncommon situation in which

covariates are strongly correlated with genetic variables.

For the linear regression analysis of quantitative traits,

aðfÞ ¼ s2 and b00ðzÞ ¼ 1. Thus,

V ¼ bs�2

(Xn
i¼1

GiG
T
i �
 Xn

i¼1

GiX
T
i

! Xn
i¼1

XiX
T
i

!�1 Xn
i¼1

XiG
T
i

!)
:

This implies that two studies with the same joint distribu-

tion of ðG;XÞ will have the same R even when their trait

variances ðs2Þ are different. For the logistic regression anal-

ysis of case-control data,

V ¼
Xn
i¼1

v
�bgT

Xi

�
GiG

T
i �

(Xn
i¼1

v
�bgT

Xi

�
GiX

T
i

)

�
(Xn

i¼1

v
�bgT

Xi

�
XiX

T
i

)�1(Xn
i¼1

v
�bgT

Xi

�
XiG

T
i

)
;

where vðzÞ ¼ ez=ð1þ ezÞ2. Thus, two studies with the

same value of g and same joint distribution of ðG;XÞ will

have the same R. Note that the value of vðbgTXiÞ does not
depend strongly on the covariate values provided that

the case-control ratio is not close to 0 or 1. Thus,

vðbgTXiÞzvðbg0Þ, where bg0 is the intercept component ofbg. Therefore,
Vz vðbg0Þ

(Xn
i¼1

GiG
T
i �

Xn
i¼1

GiX
T
i

 Xn
i¼1

XiX
T
i

!�1Xn
i¼1

XiG
T
i

)
;
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which implies that two studies with the same joint

distribution of ðG;XÞ will have approximately the same R

even when their case-control ratios are different.
Supplemental Data

Supplemental Data include four figures and four tables and

can be found with this article online at http://www.cell.com/

AJHG/.
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Johansson, Toby Johnson, Stavroula Kanoni, Marcus E.

Kleber, Inke R. König, Kati Kristiansson, Zoltán Kutalik,

Claudia Lamina, Cecile Lecoeur, Guo Li, Massimo

Mangino, Wendy L. McArdle, Carolina Medina-Gomez,

Martina Müller-Nurasyid, Julius S. Ngwa, Ilja M. Nolte,

Lavinia Paternoster, Sonali Pechlivanis, Markus Perola,

Marjolein J. Peters, Michael Preuss, Lynda M. Rose, Jianxin

Shi, Dmitry Shungin, Albert Vernon Smith, Rona J.

Strawbridge, Ida Surakka, Alexander Teumer, Mieke D.

Trip, Jonathan Tyrer, Jana V. Van Vliet-Ostaptchouk,

Liesbeth Vandenput, Lindsay L. Waite, Jing Hua Zhao,

Devin Absher, Folkert W. Asselbergs, Mustafa Atalay,

Antony P. Attwood, Anthony J. Balmforth, Hanneke

Basart, John Beilby, Lori L. Bonnycastle, Paolo Brambilla,

Marcel Bruinenberg, Harry Campbell, Daniel I. Chasman,

Peter S. Chines, Francis S. Collins, John M. Connell,

William Cookson, Ulf de Faire, Femmie de Vegt, Mariano

Dei, Maria Dimitriou, Sarah Edkins, Karol Estrada, David

M. Evans, Martin Farrall, Marco M. Ferrario, Jean Ferrières,

Lude Franke, Francesca Frau, Pablo V. Gejman, Harald

Grallert, Henrik Grönberg, Vilmundur Gudnason, Alistair

S. Hall, Per Hall, Anna-Liisa Hartikainen, Caroline

Hayward, Nancy L. Heard-Costa, Andrew C. Heath,

Johannes Hebebrand, Georg Homuth, Frank B. Hu, Sarah

E. Hunt, Elina Hyppönen, Carlos Iribarren, Kevin B. Jacobs,

John-Olov Jansson, Antti Jula, Mika Kähönen, Sekar

Kathiresan, Frank Kee, Kay-Tee Khaw, Mika Kivimaki,

Wolfgang Koenig, Aldi T. Kraja, Meena Kumari, Kari
ican Journal of Human Genetics 93, 236–248, August 8, 2013 247

http://dx.doi.org/10.1073/pnas.1221713110


Kuulasmaa, Johanna Kuusisto, Jaana H. Laitinen, Timo A.

Lakka, Claudia Langenberg, Lenore J. Launer, Lars Lind,

Jaana Lindström, Jianjun Liu, Antonio Liuzzi, Marja-Liisa

Lokki, Mattias Lorentzon, Pamela A. Madden,Patrik K.

Magnusson, Paolo Manunta, Diana Marek, Winfried

März, Irene Mateo Leach, Barbara McKnight, Sarah E.

Medland, Evelin Mihailov, Lili Milani, Grant W.

Montgomery, Vincent Mooser, Thomas W. Mühleisen,

Patricia B. Munroe, Arthur W. Musk, Narisu Narisu, Gerjan

Navis, George Nicholson, Ellen A. Nohr, Ken K. Ong, Ben

A. Oostra, Colin N.A. Palmer, Aarno Palotie, John F. Peden,

Nancy Pedersen, Annette Peters, Ozren Polasek, Anneli

Pouta, Peter P. Pramstaller, Inga Prokopenko, Carolin

Pütter, Aparna Radhakrishnan, Olli Raitakari, Augusto

Rendon, Fernando Rivadeneira, Igor Rudan, Timo E.

Saaristo, Jennifer G. Sambrook, Alan R. Sanders, Serena

Sanna, Jouko Saramies, Sabine Schipf, Stefan Schreiber,

Heribert Schunkert, So-Youn Shin, Stefano Signorini,

Juha Sinisalo, Boris Skrobek, Nicole Soranzo, Alena
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