22 research outputs found

    The chemical speciation of Fe(III) in freshwaters

    Get PDF
    Dialysis and chemical speciation modelling have been used to calculate activities of Fe3+ for a range of UK surface waters of varying chemistry (pH 4.3–8.0; dissolved organic carbon 1.7–40.3 mg l-1) at 283K. The resulting activities were regressed against pH to give the empirical model: log aFe3+ = 2.76(±0.53) – 2.63(±0.08)•pH Predicted Fe3+ activities are consistent with a solid–solution equilibrium with hydrous ferric oxide. However, the apparent solubility of the solid phase decreases as pH decreases, consistent with some previous studies on Fe(III) solubility in the laboratory. The empirical model was used to predict concentrations of Fe in dialysates and ultrafiltrates of globally distributed surface and soil/ground waters. The predictions were improved greatly by the incorporation of a temperature correction for aFe3+, consistent with the temperature–dependence of previously reported hydrous ferric oxide solubility. The empirical model, incorporating temperature effects, may be used to make generic predictions of the ratio of free and complexed Fe(III) to dissolved organic matter in freshwaters. Comparison of such ratios with observed Fe : dissolved organic matter ratios allows an assessment to be made of the amounts of Fe present as Fe(II) or colloidal Fe(III), where no separate measurements have been made

    Flexible and Biocompatible Antifouling Polyurethane Surfaces Incorporating Tethered Antimicrobial Peptides through Click Reactions

    Get PDF
    Efficient, simple antibacterial materials to combat implant-associated infections are much in demand. Herein, the development of polyurethanes, both cross-linked thermoset and flexible and versatile thermoplastic, suitable for “click on demand” attachment of antibacterial compounds enabled via incorporation of an alkyne-containing diol monomer in the polymer backbone, is described. By employing different polyolic polytetrahydrofurans, isocyanates, and chain extenders, a robust and flexible material comparable to commercial thermoplastic polyurethane is prepared. A series of short synthetic antimicrobial peptides are designed, synthesized, and covalently attached in a single coupling step to generate a homogenous coating. The lead material is shown to be biocompatible and does not display any toxicity against either mouse fibroblasts or reconstructed human epidermis according to ISO and OECD guidelines. The repelling performance of the peptide-coated materials is illustrated against colonization and biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis on coated plastic films and finally, on coated commercial central venous catheters employing LIVE/DEAD staining, confocal laser scanning microscopy, and bacterial counts. This study presents the successful development of a versatile and scalable polyurethane with the potential for use in the medical field to reduce the impact of bacterial biofilms. This study was financed by Amicoat A/S. The authors are grateful for the analytical assistance from RISE scientists L. Brive, P. Borchardt, K. Johansson, and J. Somertune.</p

    Phosphorus Binding to Nanoparticles and Colloids in Forest Stream Waters

    No full text
    Elemental contents in catchment headwaters are indicative of the load of nutrients and minerals cycled or released from ecosystems, yet little is known about natural colloids (1–1000 nm) and especially natural nanoparticles (NNP, 1–100 nm) as nutrient carriers in forested headwater streams. We hypothesize that the majority of P is bound to NNP in forest streams but that their size and composition varies for different forested headwater systems. Four forested sites in Germany and one in Norway, which differ in total P content, were sampled for stream water and analyzed for colloids. The samples were fractionated using field flow fractionation coupled to inductively coupled plasma–mass spectrometry and an organic C detector. The results showed that NNP and colloids from all sites could be separated into three distinct fractions (approximately 1–20 nm, >20–60 nm, and >60 nm). The elemental concentrations of P, organic C, Al, Si, Fe, and Mn in the fractions differed among the five sites. However, cluster analysis showed that each fraction had unique elemental signatures with different preferential P binding partners. Phosphorus was preferentially associated with Fe in the smallest size fraction, with an increasing contribution of organic-C-associated P as the fraction size increased. The largest fraction was dominated by clay minerals. Also, the data indicated that the relative contribution of the NNP and colloidal fractions for ecosystem nutrient supply rises as total P concentrations decline. The study highlighted the still underestimated importance of NNP for matter transport in forest streams and thus P cycling
    corecore