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Abstract: Dialysis and chemical speciation modelling have been used to calculate activities of Fe3+ 

for a range of UK surface waters of varying chemistry (pH 4.3-8.0; dissolved organic carbon 1.7-

40.3 mg l-1) at 283K. The resulting activities were regressed against pH to give the empirical model:

log aFe3+ = 2.93(±0.40) - 2.70(±0.06)*pH

Predicted Fe3+ activities are consistent with a solid-solution equilibrium with hydrous ferric oxide, 

consistent with some previous studies on Fe(III) solubility in the laboratory. However, as has also 

sometimes been observed in the laboratory, the slope of the solubility equation is lower than the 

theoretical value of three. The empirical model was used to predict concentrations of Fe in 

dialysates and ultrafiltrates of globally distributed surface and soil/ground waters.  The predictions 

were improved greatly by the incorporation of a temperature correction for aFe3+, consistent with 

the temperature-dependence of previously reported hydrous ferric oxide solubility. The empirical 

model, incorporating temperature effects, may be used to make generic predictions of the ratio of 

free and complexed Fe(III) to dissolved organic matter in freshwaters.  Comparison of such ratios 

with observed Fe : dissolved organic matter ratios allows an assessment to be made of the 



amounts of Fe present as Fe(II) or colloidal Fe(III), where no separate measurements have been 

made.

Response to Reviewers: Reviewer #1: Review of AQUA116, "The chemical speciation of Fe(III) in 

freshwaters", by Stephen Lofts, Edward Tipping and John Hamilton-Taylor.

General response to reviewer #1:

We are very gratified to read this reviewers' very positive comments. We are happy to amend the 

paper as suggested and agree that further comparison of our results with previous laboratory work 

is appropriate. Responses to specific comments are listed below beneath each comment in turn.

The authors of this manuscript have used observations of truly dissolved Fe concentrations in 

freshwaters (obtained via dialysis procedures in UK surface waters) in conjunction with chemical 

speciation modeling to determine the activity of Fe(III) as a function of pH over a range of dissolved 

organic carbon concentrations and pH. The results were summarized with a simple empirical model. 

The empirical model was then used to predict Fe concentrations in dialysates and ultrafiltrates 

reported for globally distributed surface and soil/ground waters. The authors' model is consistent 

with previous observations of Fe(III) solubility obtained in the laboratory, and the observed 

correspondence between observed and predicted Fe(III), using a global dataset, is consistent with 

laboratory observations of the influence of temperature on the solubility of hydrous ferric oxide. A 

key element of the authors' work is their focus on description of truly-dissolved Fe concentrations 

as opposed to operationally defined concentrations. 

This manuscript is uncommonly well written, and is one of the more interesting manuscripts I have 

encountered in a number of years. I think that this work is destined to be much-cited. It will likely 

serve as a keystone for further quantitative advances toward an understanding of iron 

biogeochemistry. In their conclusions section the authors indicate that dissolved Fe(II) comprises a 

substantial fraction of the truly-dissolved Fe pool. Their associated conclusion - that Fe(II) 

measurements in the environment should be given a higher priority - is compelling and important.

While I am happy to recommend publication of this manuscript, I think that it would be significantly 

improved through additional comparisons with prior work. The authors compare the slope of 

equation (2) with the slopes obtained by Byrne and Luo (2000) and Byrne et al. (2005), but have 

not compared their solubility product (intercept) with the results obtained in either of those works. I 



recommend that the authors make such comparisons by (a) estimating the activity coefficients of 

ferric ions and hydrogen ions in the previous analyses that were conducted at 0.7 molal ionic 

strength and (b) considering the effects of ageing on hydrous ferric oxide documented by Liu and 

Millero (1999). Ageing effects will reduce the solubility products that were determined by Byrne and 

Luo (2000) and Byrne et al. (2005) on relatively short time scales. 

Response: We have inserted additional text and a new figure discussing the issue. This is an 

interesting issue that we feel is worth including in the paper, particularly as we had already partly 

discussed some of the studies concerned.

Infelicities and errata

Comparison of the authors' abstract and the discussion of ferric ion activities on page 15 suggests 

that the final draft of the authors' manuscript inadvertently contains some elements of earlier 

versions. The equation highlighted in the abstract should presumably agree with equation 2.

Response: This has been corrected.

On page 5, fourth line of section 2, for many readers it might be useful to have "rankers" defined.

Response: A definition has been inserted.

On page 7 the first sentence (beginning "Total Fe and Fe(II).") is awkward. 

Response: The sentence has been simplified.

On page 10, section 4.4.1, I suggest reordering the structure of a sentence as follows - "Stream 

water temperatures were estimated from the available data by.". 

Response: Amended.

On page 19, six lines from bottom of page, "103 - 104" should be given as "10-3 - 10-4".

Response: Amended.



For the final sentence before the Conclusions section I suggest the following - ".would presumably 

occur through precipitation of HFO."

Response: Amended.

The conclusions section is very well written. However, in the final sentence the meaning of ".so 

riverine endmember compositions must reflect 'real' conditions and not simply waters having high 

Fe concentrations." is somewhat enigmatic. 

Response: On reflection we have elected to remove the final two sentences of the Conclusions 

since they detract somewhat from the previous sentence, which itself forms a suitable final point.

In Table 1 the stoichiometry of the next-to-last reaction (formation of FeF2+) is incorrect.

Response: Amended.

Reviewer #2

General response to reviewer #2:

This reviewer feels that there are some difficulties with our experimental methods and results. Their 

main concerns appear to be the prediction of truly dissolved Fe in the field data, where they 

consider that "the model predicted result do not appear to match literature measurement values 

very well". We would take issue with this on two counts: firstly, it is difficult to respond constructively 

to such a vaguely worded statement in a truly meaningful way, and secondly, we would (and 

indeed already have) argued that considering the inherent uncertainties in model and 

measurements, the results are in fact reasonably good. The reviewer considers that the 'poor' 

predictions may result from the fact that our modelling approach does not considering specific 

binding ligands for Fe. We have considered this point in the paper, but not explicitly. In the light of 

these comments, we have inserted additional text to contrast our and other modelling approaches.

The reviewer also considers that there may be difficulties in measuring the truly dissolved Fe in our 

samples due to our analysis methods. We did in fact take a number of steps to ensure the high 

quality of our results (detailed in the response to point 2a) below). We would also point out that in 

freshwater systems the use of clean techniques for Fe analysis is not necessarily appropriate as 



the metal is usually present at above trace amounts (cf. the oceans where Fe is present in trace 

amounts).

We have responded to the specific points made by this reviewer below. In each case, we have 

refuted the criticism, and overall we do not consider it warranted to amend the manuscript on the 

basis of this review.

Specific points

This manuscript presents an empirical relationship between Fe3+ activity and the solution pH and 

temperature based on fitting the "WHAM/Model VI model" to the dialysis experiments results for 

field samples. The experiments appear to have some problems and the model predicted result  do 

not appear to match literature measurement values very well.  These may result mainly from the 

lack of accurate knowledge of Fe-binding constants of dissolved organic matter (and its variation 

due to the influence by ionic strength, pH and temperature) and the difficulties in accurate 

determining Fe, especially truly dissolved Fe in the sample.  My detailed questions are listed below:

1. Using DOC concentration in the model would not be appropriate if the relationship between 

DOC concentration and the concentration of organic ligands that bind Fe in the water is not known.  

Response: We think that the reviewer is comparing our modelling approach with that used to 

quantify metal-organic binding in seawater. A central hypothesis of our approach is that we 

consider the portion of DOC that binds metals to be the humic substances (humic acid and fulvic 

acid) present in the water. Since humics typically comprise the majority of freshwater DOC in fluvial 

systems, we then assume that for modelling purposes their concentration can be estimated from a 

bulk measurement of DOC. In this approach there is no need to quantify concentrations of specific 

organic ligands binding the metal.

This approach and its uncertainties are discussed in Section 4.3. In response to the reviewers 

comment we have inserted additional text explaining the approach in the Introduction and 

Discussion sections.

2. The dialysis results may be questionable because of the lack of considering several factors 

that may influence the concentration of Fe and DOC in the dialysis bag after prolonged incubation:  



a) Trace metal clean techniques are not used in Fe analysis and there is a need to consider 

influence by Fe contamination; 

Response: In addition to the measures outlined in the manuscript (i.e. acid washing of sampling 

vessels), preparation, insertion and removal of dialysis bags was done under clean conditions and 

the colorimetric analysis of Fe was rigorously quality-controlled using standards kept in clean 

conditions.

b) Fe3+ and its hydrolysis species may absorb onto the wall of dialysis bag; 

c) Fe2+ may diffuse through the dialysis bag and then converted to Fe3+ during the course of the 

experiments. 

e) During 7 days incubation, Fe3+ and DOC may absorb on the wall of the container and the

dialysis bag;

Response: These all may indeed occur during the incubation experiments. However, in the 

presence of hydrous ferric oxide, the Fe3+ activity is controlled and thus buffered. Therefore, these 

phenomena should not affect the Fe3+ activity.

d) The portion of DOC that did not diffuse through the dialysis bag may also bind Fe3+ and thus 

lowering Fe3+ activity;

Response: The non-dialysable DOC unquestionably will bind Fe3+. However, whether a portion of 

the DOC is dialyzable or not will not affect the Fe3+ activity since at equilibrium this will be the 

same throughout the system (i.e. inside and outside the bag) as the Fe3+ ion and other small ionic 

species of Fe can equilibrate across the dialysis membrane.

f) Since pH changed during dialysis incubation, it is not clear if the resulting speciation modeling 

would be valid for natural sample pH.

Response: The objective of our incubation experiments was to generate data on the speciation of 

Fe under conditions as close to natural as possible (particularly with respect to the presence of 

natural dissolved organic carbon). This is in practice not possible for reasons including pH shifts as 

we have pointed out in the paper. Our experimental design took account of possible changes in 

chemistry by explicit analysis of the samples after incubation. These data were then used for 



speciation modelling to generate an FeIII solubility expression which was used to predict speciation 

in other natural waters. Using the chemical composition at the end of incubation in model 

calibration accounts for any changes that occur during incubation. It was not a part of the work to 

apply the speciation modelling results obtained from our incubated samples directly back to the 

natural conditions in those samples.

g) Bacteria may influence DOC content and composition in 7 day period.

Response: This is a plausible hypothesis – but it should be borne in mind that bacteria exert such 

an influence on DOC under natural conditions anyway. It would have been useful if the reviewer 

had provided examples in the literature of such an occurrence - we know of no evidence that 

freshwater DOC composition is significantly altered by bacterial action under similar experimental 

conditions to ours.

3. What is the explanation for the statement that "There was a tendency for Fe concentrations 

to be higher at lower pH, although this trend was not especially pronounced. There was also a 

tendency for higher filtered Fe to be associated with higher DOC, although this was not general"?

Response: This is simply a descriptive statement of trends in Fe concentrations observed in our 

data, which we provide as (hopefully) useful background information for the reader. To attempt to 

explain such trends, if possible, would likely require a separate manuscript.

4. "It is important to realize, however, that ultimately the proportion of the filterable DOM that 

is dialyzable is not important for this work", why? 

Response: At equilibrium in the incubated system, the activity of Fe3+ will be the same inside and 

outside the bag, because it can easily pass through the dialysis membrane. Since the activity of 

Fe3+ is controlled by a solid oxide phase its activity is independent of the concentration of DOM, or 

by the distribution of DOM inside and outside the dialysis bag.

5. The model results do not seem to fit the field data in Figure 3 well and the data points have 

a large deviation from the 1:1 line.



Response: We feel that this is a somewhat inaccurate comment – particularly so since the model 

describes some of the field data very well. As we point out in the text, after adjustment for 

temperature most of the predictions fall within a factor of three of the observations, which we would 

consider very reasonable, given the levels of uncertainty inherent in making predictions of the 

chemical speciation of field waters. We have attempted to account for at least some of the 

uncertainty in the model predictions, but we should point out that there will also be measurement 

uncertainty in the observations. This is a particularly pertinent point as all the data have been 

gathered using relatively complex methods (e.g. ultrafiltration or dialysis). We would also point out 

that the observations cover at least two orders of magnitude in truly dissolved Fe and that the 

model is reasonably successful in reproducing this variability.

6. Should Fe solubility increase instead of "decrease as pH decreases" as stated in the 

abstract? 

Response: It is the apparent solubility product of the hydrous ferric oxide that decreases as pH 

decreases. We have reworded this part of the abstract to discuss the slope of the solubility 

equation, since it is this equation on which we focus in the main text.
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Abstract

Dialysis and chemical speciation modelling have been used to calculate activities of Fe3+

for a range of UK surface waters of varying chemistry (pH 4.3–8.0; dissolved organic 

carbon 1.7–40.3 mg l-1) at 283K. The resulting activities were regressed against pH to 

give the empirical model:

log aFe3+ = 2.93(±0.40) – 2.70(±0.06)·pH

Predicted Fe3+ activities are consistent with a solid–solution equilibrium with hydrous 

ferric oxide, consistent with some previous studies on Fe(III) solubility in the laboratory. 

However, as has also sometimes been observed in the laboratory, the slope of the 

solubility equation is lower than the theoretical value of three. The empirical model was 

used to predict concentrations of Fe in dialysates and ultrafiltrates of globally distributed 

surface and soil/ground waters.  The predictions were improved greatly by the 

incorporation of a temperature correction for aFe3+, consistent with the temperature–

dependence of previously reported hydrous ferric oxide solubility. The empirical model, 

incorporating temperature effects, may be used to make generic predictions of the ratio of 

free and complexed Fe(III) to dissolved organic matter in freshwaters.  Comparison of 

such ratios with observed Fe : dissolved organic matter ratios allows an assessment to 

be made of the amounts of Fe present as Fe(II) or colloidal Fe(III), where no separate 

measurements have been made.

Iron; speciation; solubility; freshwater; dialysis; ultrafiltration

1 Introduction

Iron is one of the most abundant elements on Earth, and is considered 

essential for living organisms.  It is highly reactive in the freshwater 

environment, has an oxidation–reduction chemistry that is an important 

aspect of its aquatic cycling behaviour, and has been shown to have a 

number of significant roles in the cycling and bioavailability of other 

elements.  In oxic freshwaters the +3 oxidation state is the 

thermodynamically stable form (Davison, 1993).  Iron(III) influences the 

speciation and bioavailability of phosphorus in lakes (Jones et al., 1993), 

promotes the decomposition of dissolved organic carbon in surface waters 

by photochemical means (Stumm and Morgan, 1996), and forms 

particulate oxides and hydroxides (hereafter collectively referred to as

hydrous ferric oxide, HFO) capable of sorbing and transporting trace 
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metals and anionic species (Dzombak and Morel, 1990) and dissolved

organic matter (DOM) (Tipping, 1981).  More recently, the importance of 

iron in limiting phytoplankton growth in the oceans has increased interest 

in riverine fluxes to the oceans (Turner et al., 2001). Additionally, iron 

influences the aquatic speciation and bioavailability of trace metals by 

competing for common ligands such as natural organic matter (Tipping et 

al., 2002). Clearly, knowledge of the speciation of Fe(III) is key in 

developing a quantitative understanding of these processes.

Our knowledge of inorganic Fe(III) chemistry indicates that in the range of 

pH (6–9) of the majority of surface waters, the concentration of free and 

complexed dissolved Fe(III) concentration should be very low due to 

extensive hydrolysis and precipitation to form HFO.  In practice, measured 

concentrations of dissolved (i.e. filtered) Fe in such waters tend to be 

larger, sometimes by several orders of magnitude, than concentrations 

predicted by assuming equilibrium of Fe(III) with an HFO phase.  The 

presence of this additional dissolved Fe has been variously attributed to 

dissolved organic complexes of Fe(III) (e.g. Perdue et al., 1976; Koenings, 

1976) or to the presence of small particles of HFO, perhaps stabilised by 

surface coatings of natural organic matter (e.g. Shapiro, 1966; Cameron & 

Liss, 1984; Laxen and Chandler, 1983), but evidence for the relative 

importance of these forms is somewhat lacking.  Recent work on the 

speciation of iron in natural waters (e.g. Rose et al., 1998; Olivié–Lauquet 

et al., 1999; Benedetti et al., 2003; Allard et al., 2004) suggests that iron in 

colloidal phases (variously defined with a lower nominal cutoff in the range 

5–30 kDa) can exist both as organic complexes and small hydroxide 

particles.  Lyvén et al. (2003) used flow field–flow fractionation to 

demonstrate the presence of two distinct iron forms in a surface water – a 

small fraction (largely below a nominal molecular weight of 30kDa) 

associated with organic C, and a larger fraction rich in Fe itself.  These 

results are strongly suggestive of the presence of Fe(III) as a mixture of 

organic complexes and an HFO phase, and also indicate that a reliable 

size separation method can differentiate the two forms.  Sophisticated 

methods such as flow field–flow fractionation can provide invaluable fine 

scale information on physical speciation, but are complex and not 
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amenable to high sample throughput.  A simpler separation technique, 

amenable to use on large numbers of samples, is needed to investigate 

spatial and temporal trends in Fe(III) speciation in surface waters.  

Ultrafiltration is reasonably well–established yet issues remain regarding 

artefacts, such as the blockage of filter pores by suspended material, and 

the formation of ‘gel’ layers at the filter surface.  Dialysis, on the other 

hand, is relatively simple and non–invasive, and has previously been used 

to isolate small size fractions of metals (e.g. Beneš and Steinnes, 1974; 

Jansen et al., 2001).

The ability to quantitatively separate the Fe in the size range below that in 

which HFO is encountered would be highly useful in the study of whether 

and how HFO controls the combined concentrations of free and 

complexed Fe(III) (hereafter referred to as truly dissolved Fe(III)). 

Laboratory studies on synthetic forms of HFO indicate that for the solubility 

equilibrium

Fe(OH)3 (s) + 3H+ ↔ Fe3+ + 3H2O (1)

values for the standard solubility product KSO are in the range 102.5–105.0.

Allard et al. (2004) showed that the concentrations of colloidal organically–

complexed Fe(III) in waters from the Amazon region were consistent with 

an equilibrium between the Fe3+ ion and an HFO with a single solubility 

product within this range. However there has been no extension of this 

work to other environments, particularly to temperate regions and to 

soil/ground waters. Chemical speciation of a small size fraction from which 

HFO has been removed would allow the Fe3+ activity to be estimated and 

thus allow controls on Fe(III) solubility to be assessed. This would in 

principle enable a general model of Fe(III) chemistry in freshwaters to be 

constructed. 

The modelling of the binding of a metal such as Fe(III) to aquatic dissolved 

organic matter (DOM) is complex, and a clear conceptual picture of the 

binding properties of the DOM is required. Some workers consider the 

binding to be to specific organic ligands, while others consider the binding 

to be controlled by binding sites on the bulk of the organic matter, in 

competition with protons and other trace metals. In the second hypothesis 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5

the degree of binding may in principle be related to the total concentration 

of DOM whereas in the first hypothesis the concentrations of specific 

ligands are not necessarily related to the total DOM concentration. In 

previous work, Tipping et al. (2002) characterised the binding of Fe(III) to 

isolated humic and fulvic acids using the WHAM/Model VI model and used 

the paameterised model to simulate Fe(III) speciation in a limited number 

of field samples, under the assumption that Fe(III) binding to DOC could 

be related to its binding to fulvic acid.The model was able to describe 

speciation in the data, if some reasonable variability in model parameters 

among samples was allowed. There is, however, a pressing need to 

further assess model performance against field data.

In the work reported here, we have sampled and dialysed natural waters, 

giving a dialysate excluding fine particulates in which the Fe(III) should be 

present only in truly dissolved form.  We have used WHAM/Model VI to 

calculate Fe3+ activities in these samples, and used the results to produce 

an empirical expression for the variation in Fe3+ activity with pH and 

temperature. We have compared this expression with predictions of Fe3+

activity derived from laboratory studies of Fe(III) solubility, and we have 

shown how our results may be incorporated into speciation models either 

empirically or by assuming equilibrium with an HFO–type phase. We then 

make predictions of truly dissolved Fe(III) in dialysates and ultrafiltrates of 

surface and soil/ground waters, reported in the literature. We have also 

investigated the use of the Fe:DOM ratio in the truly dissolved fraction as a

means of assessing Fe speciation, and illustrated this using an extensive 

dataset on UK surface waters.

2 Study sites

Surface water samples were obtained from 10 sites in the northwest of 

England.  Of the sites, seven are situated in the upland areas of the 

Pennines and the Forest of Bowland.  These areas are dominated by 

blanket peats and rankers (relatively shallow organic-rich soils usally 

developed directly over the underlying rock). Landscape types include acid 

grassland, blanket bog and upland heathland. The underlying geology 
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comprises both acidic and alkaline rock types.  The remaining sites are 

situated in the lowlands. Two of these (the River Lune and the River 

Ribble) drain upland areas and were sampled close to their tidal limits.  

The third lowland site, Roudsea Wood, drains a complex of raised lowland 

peat bogs.  Two samples were obtained from seven of the sites.  Of these, 

four (the Rivers Hodder, Lune and Ribble, and the Whitray Beck tributary) 

were sampled under high flow conditions in November 2003 and low flow 

conditions in January 2004.

3 Experimental

Deionised water (conforming to the ASTM Type 1 standard) was used for 

all dilutions and washings. Sample vessels of 5L or 10L volume were 

used.  All sampling vessels were soaked in 1% v/v nitric acid (BDH 

‘Aristar’ grade) for 24 hours, followed by deionised water for 24 hours.  On 

return to the laboratory, bags of dialysis membrane (SpectraPor 7 

regenerated cellulose, Spectrum Laboratories Inc., 3.5kDa, 10kDa and 

15kDa molecular weight cutoff) containing deionised water were 

suspended directly into the solution.  All dialysis membranes were 

thoroughly rinsed with deionised water prior to use.   The solution volume 

within each set of dialysis bags was 2% of the sample volume.  Samples 

containing dialysis bags were stirred at 10oC in the dark for seven days.  

The dialysis bags were removed, rinsed thoroughly with deionised water 

and the dialysate solutions removed.  A portion was acidified with 5M 

hydrochloric acid (BDH ‘Spectrosol’ grade; 200ml per 10ml sample) for 

colorimetric analysis of total Fe and Fe(II).  The remaining dialysate was 

stored unaltered for analysis of dissolved organic carbon (DOC) and 

monomeric aluminium.  A portion of the outer sample solution was 

retained for analysis of pH and conductivity.  All solutions were stored in 

the dark at 4oC until analysis.

Field samples for the analysis of water chemistry were obtained at the 

same time as experimental samples.  Samples for the measurement of pH 

were collected in thoroughly rinsed airtight glass vessels and analysed 

within 24 hours.  Samples for the analysis of major ions, alkalinity, DOC, 
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monomeric aluminium and acid–reactive aluminium were taken in single–

use polyethylene terephthalate (PETE) bottles.  Unfiltered samples were 

analysed for alkalinity, monomeric aluminium and acid–reactive 

aluminium.  On return to the laboratory a portion of sample was filtered 

(GF/F filters, Whatman Inc.) for the analysis of major ions, monomeric 

aluminium and acid–reactive aluminium.  Samples for the analysis of total 

Fe and Fe(II) were taken in PETE bottles previously soaked in 1% (v/v) 

nitric acid (BDH ‘AnalaR’ grade) and rinsed thoroughly with deionised 

water.  The samples were filtered (0.45µm cut–off filters, Whatman Inc.) 

immediately on return to the laboratory and acidified with 5M hydrochloric 

acid (BDH ‘Spectrosol’ grade; 200ml per 10ml sample) prior to storage for 

analysis of total Fe and Fe(II). All samples were stored in the dark at 4oC 

prior to analysis.  

Total Fe and Fe(II) were analysed colorimetrically using Ferrozine®

(Sigma-Aldrich Chemie GmbH) Gibbs (1979) in an acetic acid/sodium 

acetate buffer at a wavelength of 562nm. Calibration was done using 

solutions prepared from stock iron(III) nitrate standards (BDH ‘Aristar’ 

grade).  For the analysis of total iron, a reducing agent 

(hydroxylammonium chloride) was added to standards and samples to 

reduce Fe(III) to Fe(II), and a contact time of 10 minutes was allowed prior 

to analysis.  For the analysis of Fe(II), reducing agent was not added and 

a contact time of 30s was allowed.  Prior to analysis, the recovery of Fe(II) 

from mixed Fe(II)/Fe(III) solutions (1:1 w/w) was analysed; the mean 

recovery of 50µg dm-3 (895nM) and 250µg dm-3 (4476nM) Fe(II) from 

mixed solutions was 105.0%. Quality standards were prepared from an 

independent iron(III) nitrate stock solution (BDH ‘Aristar’ grade).  The 

detection limit of the method (calculated as twice the standard deviation of 

control samples), for both Fe(II) and total Fe, was 2µg dm-3 (36nM) for a 

cell path length of 4cm (Hitachi U-2000 spectrophotometer).  All 

determinations were performed within three days of sampling.

Monomeric and acid–reactive Al were determined by the method of Seip 

et al. (1984). Measurements of pH were made following the procedures 

recommended by Davison (1990) using a GK2401C combination electrode 
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(Radiometer Inc.).  Major cations (sodium, magnesium, potassium and 

calcium) were measured by ICP–OES (Perkin Elmer Optima 4300 DV) on 

filtered samples after acidification.  Major anions (chloride, nitrate, 

sulphate) were measured by ion chromatography (DX 100, Dionex Corp.).  

Alkalinity was measured by Gran titration, using a 702 SM Titrino 

(Metrohm AG).  Dissolved organic carbon was measured by flame 

combustion (TOC-V CPH/CPN analyser, Shimadzu Corp.).

4 Speciation modelling

4.1 Nomenclature

In presenting and discussing the modelling, we will use the term ‘truly 

dissolved’ Fe(III) to refer to the modelled sum of the free ion, inorganic and 

organic complexes, and ‘colloidal’ to refer to filterable Fe(III) that is 

predicted to be precipitated as HFO or to be complexed to organic matter 

that is not ultrafiltered or dialysed. Where reference is made to modelling 

in equilibrium with the atmosphere, this refers to the use of a carbon 

dioxide partial pressure of 3.65 × 10-4 atm for the purpose of simulating the 

carbonate system.

4.2 WHAM/Model VI

Speciation modelling was done using WHAM/Model VI (Tipping, 1994; 

Tipping, 1998; Tipping et al., 2003).  For the purposes of this work the 

model can be considered as combining a standard model of 

thermodynamic equilibria among solution ions, with a model for the 

equilibrium complexation of ions with fulvic acid (Model VI). Model VI 

considers complexation of cations to fulvic acid by complexation at 

discrete sites and by electrostatic accumulation.  The model contains 80 

specific binding site types. The formulation of binding strengths is 

structured such that the binding of each metal is described by two metal–

specific parameters: KMA, which describes binding to relatively weak, 

abundant sites, and ΔLK2, a modifying parameter which accounts for 

binding to relatively strong, scarce sites.  It is assumed that only the free 
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metal ion and its first hydrolysis product can bind, with the same 

parameter values, and the model has been parameterised on this basis.  

Tipping (1998) calculated a value of 2.4 for logKMA for Fe(III) by linear 

regression of calculated logKMA values for fulvic acid against those for 

humic acid. Tipping et al. (2002) calculated a logKMA of 2.8 for the binding 

data of Langford and Khan (1975) and proposed a new default logKMA of 

2.6 for fulvic acid binding, which we shall use here.

Thermodynamic parameters for Fe(III) solution species are shown in Table 

1.  The formation reactions for the Fe(III) dimer Fe2(OH)2
4+ and trimer 

Fe3(OH)4
5+ were included to test for the possible importance of these 

species in the samples studied.  In practice calculated concentrations of 

these species were found to be negligible.

4.3 Model inputs

Dissolved organic matter (DOM) comprises a wide range of classes of 

compound, of which the most important from the metal binding point of 

view are the humic substances (humic and fulvic acids).  WHAM/Model VI 

has previously been shown to provide adequate descriptions of metal 

binding to uncharacterised DOM samples, by adjustment of the proportion 

of dissolved DOM considered to be chemically ‘active’ with respect to 

binding (e.g. Bryan et al., 2002; Tipping et al, 2002). Thus, within ranges 

of pH, DOM concentrations and metal concentrations previously studied, 

the use of humic substances as a surrogate for bulk dissolved NOM has 

been shown to be reasonable for the simulation of metal binding.  NOM 

was assumed throughout to comprise 50% C. It was also assumed 

throughout that DOM was 65% chemically ‘active’, i.e. that it behaved as 

though composed of 65% fulvic acid and 35% inert material with no 

binding properties, after Bryan et al. (2002).  Thus, we make the 

assumption that binding properties of DOM do not vary among samples. 

We argue that the assumptions are further justified if it can be shown that 

the resulting chemical modelling successfully provides a coherent picture 

of Fe(III) speciation across a broad range of water types.
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In order to assess the effect that variability in DOM 'activity' might have 

upon model outcomes, model calculations were done using bootstrapping. 

For each sample 10000 speciation calculations were done each with a 

different 'activity', calculated at random assuming the 'activity' to have a 

standard deviation of 15%, to give 10000 estimates of the output variable 

of interest (either log aFe3+ or total Fe(III)). The standard deviation is based 

on the range of DOM 'activities' found by Bryan (2001), based on copper 

binding to UK freshwaters. The 10000 estimates of the output variable of 

interest were used to calculate its standard deviation.

4.4 Literature data

4.4.1 USA surface waters (Babiarz et al.)

Babiarz et al. (2001) filtered 23 surface water samples from the northern 

and southern U.S.A. using conventional filtration (0.4μm) and tangential–

flow ultrafiltration (10kDa cutoff), and measured organic C, Fe and Al in 

both filtrates.  Ultrafiltration was done at ambient temperature.  The 

conductivity and pH of bulk samples were also measured.  pH ranged from 

3.8 to 8.2 and DOC from 0.2 to 26.5 mg dm-3. Concentrations of major 

ions (Na, Mg, K, Ca, Cl, NO3, SO4, F, and HCO3) were estimated for 20 of 

the sites from the United States Geological Survey (USGS) via the 

National Water Information System (2008) to derive relationships between 

each major ion and conductivity, from time series samples for the sites 

closest to those sampled by Babiarz et al. (2001). Stream water 

temperatures were estimated from the available data by taking the mean 

of all measured temperatures for the sampling month.  For two samples 

taken in the Florida Everglades, pH, concentrations of DOC, Na, Mg, K, 

Ca, Cl, SO4 and alkalinity were taken from the United States Geological 

Survey South Florida Information Access Service (2008).  Major ions at 

two further Everglades sites were estimated by scaling the available 

concentrations to the conductivity measurements made at these sites by 

Babiarz et al. (2001).  Surface water temperatures at these four sites were 

estimated from the mean temperature for the sampling month at the 

closest site on National Water Information System (2008).
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4.4.2 Amazon surface waters (Küchler et al.)

Küchler et al. (1994) filtered samples of two Amazon waters (Rio Negro 

and Rio Solimões) at 1µm and successively ultrafiltered subsamples using 

a hollow fibre column with nominal cutoffs of 100, 10 and 3kDa.  

Concentrations of Mg, Al, K, Ca, Fe and DOC in the 10kDa and 3kDa 

ultrafiltrates were given.  Water temperatures were not given; values of 

303K were assumed, based on the mean monitored temperature for the

River Solimões during the months of sampling (GEMStat, 2008). Values of 

pH were estimated from the data of Seyler and Boaventura (2001).  These 

authors listed a pH of 4.90 in the Rio Negro at a location close to that of 

Küchler et al. (1994), which was used here.  The pH at six locations on the 

River Solimões was given, ranging from 7.02 to 7.44; the mean of 7.25 

was used. Equilibrium with atmospheric CO2 was assumed for modelling. 

Both 10kDa and 3kDa filtrates were modelled.

4.4.3 River Awout, Cameroon (Dupré et al.)

Dupré et al. (1999) sampled the Awout River (Cameroon) (pH 4.7) and 

performed sequential tangential filtration (0.2µm) and ultrafiltration 

(300kDa and 5kDa nominal cutoff). A subsample of the 0.2µm filtrate was 

acidified to pH 3.0 and ultrafiltered (1kDa nominal cutoff).  Concentrations 

of DOC, Mg, Al and Fe were given for both the 5kDa and 1kDa samples. 

Concentrations of Na, K, Ca, Cl and SO4 were also given for the 5kDa 

sample; these concentrations were used for the 1kDa sample in lieu of 

measured concentrations. pH was measured only in the 0.2µm frontal 

filtrate; this value was used for both ultrafiltrates. Equilibrium with 

atmospheric CO2 was assumed for modelling.

4.4.4 Cameroon surface and ground waters (Viers et al.)

Viers et al. (1997) sampled surface waters of the Sanaga (pH 7.4) and 

Mengong (pH 4.6) rivers of Cameroon, along with three groundwaters 

within the Mengong catchment (pH 4.7–5.5). Samples were filtered 

successively at 0.22µm, 0.025µm or 300kDa, and 5kDa.  Concentrations 

of Na, Mg, Al, K, Ca, Fe, Cl, NO3, SO4, alkalinity and DOC were measured 
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in  5kDa filtrates. The pH was measured in 0.22µm filtrates only. Two of 

the groundwater samples had DOC concentrations below the detection 

limit so were not used.

4.4.5 Brazil surface waters (Eyrolle et al.)

Eyrolle et al. (1996) sampled surface waters from three locations in Brazil 

(pH 4.1–7.1). Samples were filtered successively at 0.2µm, 100kDa, 

20kDa and 5kDa. Samples taken from the Paraná system were not 

modelled due to the low recoveries of Fe obtained, which the authors 

attributed to the use of old ultrafiltration membranes. Speciation was 

modelled in the 20kDa and 5kDa fractions. Concentrations of Mg, Al, Ca, 

Fe and DOC were measured in the 20kDa and 5kDa size fractions. 

Measurements of pH and alkalinity were done on unfiltered samples.

4.4.6 Brazil, Venezuela and Cameroon surface waters (Deberdt et al.)

Deberdt et al. (2002) sampled surface waters from locations in Brazil, 

Venezuela and Cameroon (pH 5.6–7.7). Samples were filtered 

successively at 0.2µm, 300kDa, 100kDa, 10kDa and 5kDa. Measurements 

of pH, alkalinity and temperature were done in the field. Measurements of 

Fe, Al, Na, Mg, K, Ca, Cl, NO3, SO4 and DOC were done on ultrafiltrates. 

Both 10kDa and 5kDa filtrates were modelled.

4.4.7 Russia soil waters (Pokrovsky et al.)

Pokrovsky et al. (2005) performed filtrations and ultrafiltrations of soil 

solutions from four locations near Moscow, Russia.  The solutions were 

acidic (pH 3.9–4.7) and high in DOC (39–58 mg dm-3 in 0.22µm filtrates).  

pH, DOC and major ions including Na, Mg, Al, K, Ca, Fe, Cl, NO3 and SO4

were measured.  Data for filtrates of 0.22μm filter pore size, and for 

ultrafiltrates of 10kDa and 1kDa pore size were taken.

4.4.8 Netherlands soil waters (Jansen et al.)

Jansen et al. (2001) dialysed soil solutions, obtained by aqueous 

extraction of a Dutch surface soil horizon, centrifugation and filtration at 
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0.45µm, using membranes of 1kDa nominal cut–off and a background 

ionic strength of 0.02M.  Four soil solutions were used, the pH values of 

which were adjusted to 4.0, 4.1, 7.0 and 7.1 prior to dialysis.  The ionic 

strength of each solution was adjusted to 0.01M using KNO3; this was also 

done for the initial inside bag solutions.  Fe, Al and DOC were measured 

on the inside bag solutions after 400 hours equilibration at 20oC.

4.4.9 France groundwaters (Pourret et al.)

Pourret et al. (2007) sampled four groundwaters (pH 6.2–7.1) from two 

wetlands located in the Kervidy-Naizin and Petit-Hermitage catchments, 

France. Samples were filtrated (0.2µm) and ultrafiltered at pore size cut–

offs of 30kDa, 10kDa and 5kDa. Concentrations of Na, Mg, K, Ca, Cl, NO3, 

SO4, alkalinity and pH were measured in filtrates. Concentrations of Al, Fe 

and DOC were measured in ultrafiltrates.

4.5 Statistical analysis

Regression parameters and standard errors were computed in MINITAB 

Release 14 (Minitab Inc., PA, U.S.A.). Pairwise comparisons of regression 

model fits were done in Microsoft Excel (Microsoft Inc., WA, U.S.A.) using 

likelihood ratio testing.

5 Results and Discussion

5.1 Water chemistry

The samples exhibited a wide range of pH, alkalinity and concentrations of 

calcium and magnesium (Table 2 and Data 1).  There are no apparent 

trends in these variables with location; local geological conditions probably 

exert a significant influence.  Concentrations of DOC showed influences of 

soil type and flow conditions.  At the five sites sampled under both low and 

high flow conditions, DOC was higher under high flow.  The highest 

concentrations of DOC were seen in the Roudsea Wood stream which 

drains a lowland peat bog.  The influence of flow on chemistry may be 

seen at some sites; for example, the River Hodder under high flow 
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(November 2003) exhibited significantly lower pH and higher DOC than 

under low flow (January 2004).  The two larger lowland rivers (the Lune 

and Ribble) showed similar chemical characteristics under both high and 

low flow.

Total and filtered (GF/F) concentrations of Fe varied by approximately one 

order of magnitude across the samples.  Fe concentrations tended to be 

higher at lower pH, although this was not a pronounced trend.  There was 

also a tendency for higher filtered Fe to be associated with higher DOC, 

although this was not general; the Roudsea Wood stream showed 

relatively low Fe:DOC ratios on both sampling dates.

5.2 Dialysate compositions

Sample pH values measured after dialysis for one week mainly showed 

increases in pH, of up to 1.2 units, due to CO2 degassing.  Measurements 

of Fe, Al and DOC in the dialysates are given in Data 2, Data 3 and Data 

4. Dialysis equilibrium with respect to major ions was achieved, with 

excellent agreement between the conductivity of inside and outside bag 

solutions after one week (Pearson correlation = 1.000, p < 0.001). In 

contrast, dialysate DOC concentrations were found to be lower than 

filterable concentrations, with the exception of a small number of samples 

where the DOC in the raw sample was low (<2 mg dm-3) (Figure 1).  

Dialysate DOC as a percentage of filtered DOC averaged 37% for 

dialysates of 3.5kDa and 50% for dialysates of 10kDa. Dialysis at 15kDa, 

which was not done on all samples, produced DOC concentrations 

averaging 97% of those obtained by dialysis at 10kDa. Why this apparent 

lack of equilibrium with respect to DOC occurs is not clear. Possible 

reasons include slow diffusion of larger organic molecules (Buffle et al. 

1993), retention of NOM on larger particles due to adsorption and/or 

aggregation, or the formation of micellar DOM units too large to pass the 

membrane (Kerner et al. 2003). It is plausible that some DOM is simply of 

too large a size to efficiently pass the dialysis membrane; in this context, it 

is noteworthy that in studies using ultrafiltration to isolate low molecular 

weight fractions of freshwaters, passage of DOM through ultrafiltration 
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membranes is by no means complete. For example, in the study of 

Babiarz et al. (2001) (DOM 1.6–94.6 mg l-1) between 20% and 73% of 

DOM did not pass a 10kDa pore size cutoff ultrafiltration membrane. It is 

important to realise, however, that ultimately the proportion of the filterable 

DOM that is dialyzable is not important for this work: it is more important to 

obtain a sample from which HFO has been removed in order to calculate 

aFe3+.

5.3 Fe3+ activities

Activities of Fe3+ in the dialysates (Table 3) were calculated using 

WHAM/Model VI. The relationship between log aFe3+ and dialysate pH was 

modelled by linear regression.  Where dialysates of multiple pore sizes 

were obtained from a single sample, calculated log aFe3+ values were 

weighted so that the results from each individual sample were emphasised 

equally in the regression. With bootstrapping, 10000 estimates of the 

regression parameters (slope and intercept) were obtained; the means 

and standard deviations of these estimates were taken as the parameters 

and their standard errors respectively. Activities showed a strong linear 

dependence upon pH, which could be described by the equation

log aFe3+ = 2.93(±0.40) – 2.70(±0.06)·pH; p < 0.001, SEpred = 0.58 (2)

where SEpred is the standard error of prediction and the bracketed terms 

are the standard errors of the regression parameters. Addition of a 

quadratic term in pH produced no significant improvement in the fit. This 

contrasts with the solubility trend for log aAl3+ computed by Tipping (2005),

where a quadratic term was required to adequately fit the data. The linear 

trend in log aFe3+ with pH is consistent with control of Fe3+ activities by an 

HFO type phase.  However, the slope of the line differs significantly from 

the value expected according from the theoretical solubility equilibrium of 

HFO (Equation 1): none of the 10000 slope values calculated by 

bootstrapping were below the value of -3.0 predicted.

Fig 2 shows the dependence of log aFe3+ on pH and compares modelled 

Fe3+ activities with predictions made assuming conventional solubility 

products.  Lines are plotted for standard log solubility products for HFO of 
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102.5 and 105.0, considered by Tipping et al. (2002) to represent a 

reasonable range of solubilities for this material based on the literature.

The enthalpy value of Liu and Millero (1999) (-100.4 kJ mol-1) was used to 

correct standard solubility products to 283K. It can be seen that at higher 

pH (> 6.0), mean Fe(III) solubility is characteristic of the upper end of the 

literature range while at lower pH it tends towards the lower end of the 

range. Thus the solubilities that we calculate from our observations

correspond well with the literature range. This finding also supports our 

hypothesis that Fe(III)–organic complexation can be reasonably modelled 

as a function of bulk DOC concentration rather than by invoking specific 

organic ligands.

The pH dependence of log aFe3+ in Equation (2) is worthy of note, since it 

can affect the prediction of activities appreciably in comparison with the 

standard solubility product approach. Slope values significantly below -3.0 

for the log aFe3+-pH relationship have been found in laboratory studies of 

Fe(III) solubility. Of particular interest are the studies of Byrne and Luo 

(2000) and Byrne et al. (2005), where direct potentiometric measurement 

of Fe3+ concentration variation with pH resulted in slope values of 

-2.86(±0.01) and -2.73(±0.01), respectively, for the solubility of freshly 

precipitated (15–60 minutes) HFO. Fox (1988) calculated a slope value of 

-2.35 based on speciation modelling of dialysed synthetic solutions, and

considered the slope value to result from the substitution of anionic 

counterions (e.g. Cl-, NO3
-) for OH- in the solid phase, while Byrne and Luo 

(2000) proposed as an alternative explanation a pH–dependent variation 

in the activity of the solid phase, possibly via a particle size effect. Such a 

correspondence between Equation (2) and such studies is thus intriguing 

and hints at the possibility of a common effect on the magnitude of the 

slope term. It is worth noting that the slope found is unlikely to be due to 

measurement error: if WHAM/Model VI is used to predict the total Fe(III) in 

the dialysates assuming control by HFO with a standard solubility product 

of 105.0, then in the five dialysates with pH < 5.0 the predicted Fe(III) 

concentration exceeds that observed by a factor of at least eight. 

Conversely, if a standard solubility product of 102.5 were to be assumed, 
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dialysate Fe(III) ought to be undetectable (<2 µg l-1) at circumneutral pH. 

Thus, the identified trend in Fe3+ activity appears robust.

Fig 3 compares Fe3+ activities, calculated using Equation (2) and corrected 

to 298K using the enthalpy change of Liu and Millero (1999), with values 

calculated from the solubility equations presented by Byrne et al. (2005) 

and Byrne and Luo (2000) for the concentration of Fe3+ in 0.7M NaCl and 

0.7M NaClO4, respectively.  Measured Fe3+ concentrations in Byrne et al. 

(2005) and Byrne and Luo (2000) were corrected for activity effects using 

Specific Ion Interaction Theory (Grenthe et al. 1997), using species 

interaction coefficients of 0.56 and 0.38 for Fe3+–ClO4
- and Fe3+–Cl-

interactions respectively. Activities predicted after Byrne et al. (2005) are 

consistently higher than those predicted by us, by 0.9–1.1 log units in the 

pH range 3 to 9. Within the same pH range the activities predicted after 

Byrne and Luo (1999) are within 0.6 log units of our predictions, being 

slightly higher below pH 5 and slightly lower above this pH. As can be 

seen in Fig 3, the solubility line of Byrne and Luo (2000) is entirely within 

the confidence intervals of our regression line within the pH range 3–9. 

The solubility line of Byrne et al. (2005) is within the confidence intervals 

above pH6, but is outside below this pH.

Byrne and co–workers measured Fe(III) solubility very shortly after the 

onset of precipitation (within one hour). In natural systems HFO is likely to 

be somewhat older than this, which may alter its solubility. For further 

comparison, we calculated Fe3+ activities from the experiments of Liu and 

Millero (1999) in which Fe(III) solubility was estimated between 3 hours 

and 21 days after HFO precipitation. The hydrolysis equilibrium constants 

calculated by these authors in the same experiments were used in our 

calculations. There was excellent agreement (identical to one decimal 

place) between the predictions of Liu and Millero (1999) and Byrne et al 

(2005) for the solubility of freshly precipitated HFO in NaCl, at pH 4 and 

pH 6, although at pH 8 the predicted Fe3+ activities differed by 1.4 log 

units. Following 21 days of precipitation the Fe3+ activities were between

0.5 and 0.7 log units lower than those observed for freshly precipitated 

material. At pH 4 and pH 6 the predicted activities were closer to the 
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solubility predicted from our data, and at all pH values the activities were 

within the confidence intervals on our regression line. Thus, there is 

encouraging agreement between the results of laboratory studies and the 

field data presented here, notwithstanding the differences between the 

results of the laboratory studies. However, given that natural oxides and 

hydroxides of Fe(III) are chemically and morphologically diverse (e.g. 

Davison and De Vitre 1993) it would be premature to assert a common 

mechanism of solubility control between laboratory and field. It must also 

be borne in mind that our data are subject to greater uncertainty both in 

measurement (due to the large number of input variables to the model) 

and modelling, than well–controlled laboratory studies. Further work on 

iron activity controls in freshwaters is required to investigate this 

phenomenon further.

5.4 Modelling of literature data

The literature studies did not involve the quantification of Fe(II) in 

ultrafiltrates or dialysates, with the exception of Jansen et al. (2001) where 

the absence of Fe(II) was established by colorimetry. Thus it was not 

considered appropriate to combine the literature data with the data 

generated in this study when parameterising Equation (2). Instead we 

used Equation (2) to calculate values of aFe3+ in the literature samples, 

which were then input to WHAM/Model VI along with the major ion, pH 

and DOM concentrations to predict the total dialyzable or ultrafiltrable 

Fe(III). The results (Fig 4a and 4c) indicate a good correlation between 

observed and calculated values, however the latter are on average 

overestimated: on average the predicted aFe3+ was 3.8 times greater than 

the observed value. Clearly this bias cannot be due to the presence of 

Fe(II) since if so we would expect to calculate smaller Fe(III) 

concentrations than the observed totals, on average. A more likely 

explanation is the expected effect of temperature on Fe3+ activities if the 

latter are controlled by HFO solubility. Since the dissolution of HFO

(Equation 1) is exothermic, we would expect its solubility to decrease with 

increasing temperature. Thus we would expect the concentration of free 

ionic and complexed Fe(III) in equilibrium with HFO to decrease also. 
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Since the mean temperature of the literature samples was 293K, we would 

expect that on average Equation (2) would overestimate the Fe3+ solubility

in the literature samples. While it would be possible to extend Equation (2) 

to empirically account for temperature effects by fitting to the literature 

data, we have chosen not to do so, as this would discount the possibility of 

Fe(II) as a confounding factor in the observations. Instead, we a priori

adjusted the Fe3+ activities calculated with Equation (2) assuming HFO 

solubility control:
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where Ho is the standard enthalpy change for Equation (1) (after Liu and 

Millero (1999)). The resulting predicted Fe(III) concentrations show 

appreciably better agreement with the observations (Figs 4b and 4d), with 

65 of the 90 predictions falling within a factor of three of the corresponding 

observation, compared with 53 prior to temperature adjustment. The root 

mean squared difference (RMSD) in log concentrations dropped from 0.53

to 0.44. The dataset of Babiarz et al. (2001), which contained the largest 

number of samples and a wide range of sample temperatures (273K to 

303K), showed a decrease in RMSD from 0.44 to 0.27 and improved 

prediction of total Fe(III) in 17 of the 23 samples.

Following temperature correction, the predicted Fe(III) was on average 1.8

times the observed Fe.  This is the inverse of the effect that would result 

from the presence of Fe(II) but does not preclude the possibility that Fe(II) 

is important in some samples.  For example, the discrepancy between 

observations and calculations in the dataset of Eyrolle et al (1996) could 

be due to Fe(II).

5.5 Calculating Fe(III) solubility for speciation modelling

It is desirable to incorporate the solubility of Fe(III) into speciation models 

in order to simulate Fe(III) chemistry and thus account for such effects as 

the competition between Fe(III) and trace metals for binding to humic 

substances (Tipping et al. 2002). This could be done in one of two ways. 
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Equations (2) and (3) can be combined to give a temperature–

independent expression for log aFe3+:
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which simplifies further if the enthalpy change of Liu and Millero (1999) is 

assumed:

T
a

5253
pH70.263.15log T,Fe3  (5)

This expression is suitable for the direct calculation of Fe3+ activities if the 

pH is fixed for the speciation calculation. For calculations where the pH is 

also to be calculated, it is necessary to specify the solubility parameters in 

the form of a solid phase. If the solid is assumed to have the enthalpy 

change given by Liu and Millero (1999), then from Equation (2), the 

putative standard solubility product has the form

Kso = {Fe3+}{H+}-2.70 or pH70.2loglog T,Fe3  aKso (6)

and after Equation (5):

T

5253
63.15log soK (7)

At 298K Kso is 102.00, from Equation (7).

5.6 Fe:DOM ratios in UK samples

In natural systems, Fe(III) binds relatively strongly to DOM (Tipping et al. 

2002) and the major competing species (other than H+) for binding is Al. 

Tipping (2005) has shown that the variability of Al3+ activity in surface 

waters can be reasonably described using a single function of pH. 

Assuming control of Fe3+ activity according to Equation (2) then allows a 

generic prediction of the ratio of truly dissolved Fe(III) to DOM to be made 

using WHAM/Model VI, for a temperature of 283K. This is a useful quantity 

to predict since it can be compared with measured Fe:DOM ratios: if the 

measured ratio exceeds that calculated, this indicates the presence of 
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colloidal Fe, or Fe(II). In Fig 4a, such a prediction is compared to the 

observed Fe(III):DOM ratios for the sample filtrates and dialysates

obtained in this study. Observed ratios in the filtrates were almost all in the 

range 10-3–10-4 mol g-1 and showed no variability with pH. Observed ratios 

in the dialysates overlapped to a small extent with those in the filtrates, but 

were generally lower, in the range 10-3.6–10-5.2.  The ratios also showed a 

downward trend with pH; below pH 5.0, ratios were similar in the filtrates 

and dialysates. Values of the predicted Fe(III):DOM ratio are given for pH 

3.0–9.0 in Data 5.

If a water sample contains Fe(III) not in the form of truly dissolved Fe(III), 

then we would expect its Fe(III):DOM ratio to exceed that calculated by 

taking Equation (2) as a starting point. This can be seen in Fig 4a for the 

filtrates of our samples. In Fig 4b, a set of observed Fe(III):DOM ratios is 

shown for long term monthly monitoring data from Pool X and Pool Y, two 

of the sites sampled in this study. The generic prediction of Fe(III):DOM is 

shown for reference. In line with our theory, the observed ratios are 

consistently greater than the predicted Fe(III):DOM, with the exception of a 

small number of outliers. Given the number of samples taken it is not 

surprising to find outliers with ratios below the predicted Fe(III):DOM, 

particularly since the prediction relates to a single temperature taken as a 

typical annual mean for UK waters. Of note is the observation that the 

increase in Fe(III):DOM with decreasing pH is reflected in the observed 

Fe(III):DOM ratios, particularly in the dataset from Pool X (pH 3.9–6.3). 

Observed Fe:DOM ratios are shown in Fig 5 for circumneutral to alkaline 

surface waters, comprising data for four rivers monitored under the UK 

Land Ocean Interaction Study (LOIS) in 1994-96 (Neal and Robson, 

2000). Here no separate measurements of Fe(II) were made. The 

predicted Fe:DOM ratios were corrected by assuming Fe(II) in the dialysed 

fraction to be 32% of the Fe(III), following the observations in the 

dialysates obtained in this study. This raised the predicted Fe:DOM by 

0.12 log units (a factor of 1.3).  Observed Fe:DOM ratios again largely 

exceeded the generic Fe:DOM. The exception was the River Trent, where 

an appreciable number of observed Fe:DOM ratios clustered around the 
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predicted Fe:DOM. This can be taken as an indication of relatively low 

concentrations of colloidal Fe(III) in this system.  The correction of the 

predicted Fe:DOM for the presence of Fe(II) does not greatly affect the 

outcome, since the variability in observed ratio at a given pH is much 

larger than the amount by which the correction increases Fe:DOM.

5.7 The chemistry of Fe(III) in freshwaters

The generic solubility equation can be used to investigate and predict the 

effects of changing solution conditions upon Fe(III) speciation. For 

example, the truly dissolved Fe(III):DOM ratio is predicted to decrease 

substantially with increasing pH. In the UK, acidic discharges are largely 

associated with upland areas where buffering of precipitation acidity is low 

due to either slow weathering of the underlying rock and/or the presence 

of highly organic acid soils, particularly peats and rankers. Such waters 

are represented in our dataset by Pool X, and by the River Hodder sample 

of 13 November 2003 (see Data1 for the full chemical composition). We 

carried out a series of calculations in order to investigate the predicted 

effect on Fe(III) speciation of the progressive mixing of an acid water with 

a circumneutral Ca–rich water more typical of large UK rivers. This was 

done by taking the composition of the 3.5kDa dialysates of the River 

Hodder (pH 4.35; dialyzable DOC 3.9 mg l-1; Ca 0.06 mmol l-1) and making 

a series of calculations by progressively increasing the Ca concentration 

and allowing WHAM to calculate the pH by charge balance, at a 

temperature of 283K.  The speciation of Fe(III) was considered by 

calculating the activity of Fe3+ from Equation (2). The speciation of Al was 

calculated by first allowing Al to precipitate as Al(OH)3 (s), and secondly by 

preventing precipitation from occurring. The results (Fig 6) show the 

predicted decrease in the truly dissolved Fe(III) concentration as pH 

increases. Between the initial pH and pH 6.0 approximately four–fifths of 

the truly dissolved Fe(III) is predicted to be lost. Above pH 6.0 the loss of 

Fe(III) from the truly dissolved pool slows as pH increases further, partly 

because Al precipitation reduces competition and allows Fe(III) to remain 

bound to DOM. At pH 8.5 only 7% of the truly dissolved Fe(III) present at 

the initial pH remains in this form. In the field, losses of Fe(III) from the 
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truly dissolved pool on neutralisation of acidic waters would occur through

precipitation of HFO.

6 Conclusions

Dialysis is a simple and effective way of separating a sample of 'truly 

dissolved' Fe from colloidal–sized material.  Using this technique, we have 

been able to compute Fe3+ activities for a number of UK surface waters 

and to show that the trend in log activities with pH is linear. The solubility 

of Fe3+ is close to that predicted by assuming equilibrium with a 'hydrous 

ferric oxide' type phase. The slope of the relationship between log aFe3+

and pH is lower than that predicted by the theoretical stoichiometry of the 

solid phase, a finding previously observed in some laboratory studies of 

Fe(III) solubility. By the use of a bootstrap method to account for the 

possible variability in DOM binding 'activity', we have shown that this 

finding is robust to such variability, and thus the assumption of a mean 

DOM binding 'activity' is reasonable. These findings strongly support the 

hypothesis that organic complexation of Fe(III) in freshwaters can be 

modelled as a function of DOC concentration without the need to invoke 

distinct organic ligands. The linear relationship between log aFe3+ and pH 

can be used to predict the total Fe in dialysates and ultrafiltrates sampled 

from a wide variety of surface and soil/ground waters.  The prediction is 

significantly improved if it is assumed that solubility has a temperature 

dependence predicted by the temperature dependence of HFO solubility, 

which provides strong support for the contention that HFO controls Fe3+

activities in the field. Using the Fe3+ activity equation it is possible to make 

a generic prediction of the Fe(III):DOM ratio expected at a given pH due to 

inorganic and organic complexation. Higher 'dissolved' Fe:DOM ratios in 

natural waters may be indicative of the presence of Fe in other forms, 

particularly colloidal Fe(III) and dissolved or complexed Fe(II).  

Comparison of the computed Fe(III):DOM ratio with observed Fe:DOM 

ratios in UK surface waters indicated that in most cases excess Fe, most 

likely mainly colloidal Fe(III), was indeed present. 
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A notable aspect of the literature data used in this study is the almost 

complete absence of Fe(II) measurements. Our data indicate that although 

Fe(II) might only comprise a small portion of the total 'dissolved' Fe, it is 

likely to be a more important component of the 'truly dissolved' Fe (an 

average of 24% in our samples). Clearly, when considering Fe speciation 

in natural waters the measurement of Fe(II) should have a higher priority.

There is currently a growing interest in quantifying the fluxes of riverine Fe 

to the oceans (e.g. Krachler et al. 2005), given the important role of Fe in 

controlling oceanic phytoplankton productivity. Knowledge of Fe(III) 

speciation is likely to offer considerable insight into the processes 

controlling such fluxes. While a significant proportion of Fe is lost on 

mixing of riverine and estuarine waters (e.g. Sholkovitz et al. 1978), 

evidence exists that truly dissolved Fe comprises a quasi–conservative Fe 

pool with respect to fluxes through the mixing zone (e.g. Dai and Martin 

1996). Thus, predicting the truly dissolved Fe(III) at the tidal limit using our 

solubility equation may allow better estimation of Fe fluxes through 

estuaries to the ocean.
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Table 1 Parameters for the considered solution complexation reactions of Fe(III)

Reaction log Ko Ho (kJ mol-1) Reference

Fe3+ + H2O ↔ FeOH2+ + H+ -2.19 43.4 Nordstrom et al. 1990
Fe3+ + 2H2O ↔ Fe(OH)2

+ + 2H+ -5.67 71.4 Nordstrom et al. 1990
Fe3+ + 3H2O ↔ Fe(OH)3 (aq) + 3H+ -12.56 103.5 Nordstrom et al. 1990
Fe3+ + 4H2O ↔ Fe(OH)4

- + 4H+ -21.6 133.2 Nordstrom et al. 1990
2Fe3+ + 2H2O ↔ Fe2(OH)2

4+ + 2H+ -2.85 57.7 Smith et al. 2004
3Fe3+ + 4H2O ↔ Fe3(OH)4

5+ + 4H+ -6.29 65.4 Smith et al. 2004
Fe3+ + Cl- ↔ FeCl2+ 1.48 23.5 Nordstrom et al. 1990
2Fe3+ + Cl- ↔ FeCl2

+ 2.13 – Nordstrom et al. 1990
Fe3+ + F- ↔ FeF2+ 6.2 11.3 Nordstrom et al. 1990
Fe3+ + 2F- ↔ FeF2

+ 10.8 20.1 Nordstrom et al. 1990
Fe3+ + SO4

2- ↔ FeSO4
+ 4.04 16.4 Nordstrom et al. 1990
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Table 2 Ranges of chemical determinands in sampled waters

Determinand Range

pHfield 4.16–8.14
pHfinal 4.28–8.02
DOC (mg dm-3) 1.7–40.3
(Na, Mg, K, Ca) (μmolc dm-3) 235–8122
(Cl, NO3, SO4) (μmolc dm-3) 118–6032
Alkalinity (μeqc dm-3) 0–2668
Total Fe (nM) 1199–16848
Filtered Fe (nM) 859–12337
Total Fe(II) (nM) <36–340
Filtered Fe(II) (nM) <36–573
Total monomeric Al (nM) 148–15826
Total acid–reactive Al (nM) 556–15159
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Table 3  Fe3+ activities for samples in this study and literature datasets, calculated using WHAM/Model VI (subscript 'model') and calculated by multiple linear 1

regression on pH and temperature (subscript 'regression').2

Sample name Pore size cutoff (kDa) pH log aFe3+, model (M) SD log aFe3+, model log aFe3+, regression (M)

Pool Y 3.5 6.9 -16.1 0.7 -15.4
Roudsea Wood 3.5 7.4 -16.8 0.6 -16.7
Whitray Beck tributary 3.5 6.2 -13.2 0.4 -13.6
River Hodder 3.5 4.6 -9.5 0.3 -9.4
Gais Gill 3.5 7.2 -17.0 0.6 -16.1
River Eden 3.5 7.6 -16.9 0.5 -17.2
Pool X (2) 3.5 4.6 -9.7 0.4 -9.2
Whitray Beck tributary (2) 3.5 7.4 -15.8 0.2 -16.6
River Ribble (2) 3.5 8.0 -18.2 0.4 -18.2
Roudsea Wood (2) 3.5 7.4 -16.1 0.4 -16.7
Wad Hazel Sike (2) 3.5 7.8 -17.1 0.3 -17.6
Pool X 10 4.3 -8.1 0.2 -8.5
Pool Y 10 6.9 -16.7 0.8 -15.4
Roudsea Wood 10 7.4 -16.9 0.7 -16.8
Whitray Beck tributary 10 6.4 -13.3 0.4 -14.0
River Hodder 10 4.6 -9.3 0.4 -9.3
River Lune 10 7.6 -16.8 0.3 -17.2
River Ribble 10 7.7 -17.2 0.4 -17.4
Gais Gill 10 7.3 -16.9 0.7 -16.5
River Eden 10 7.6 -16.8 0.5 -17.1
Pool X (2) 10 4.5 -9.4 0.5 -9.0
Pool Y (2) 10 7.3 -16.4 0.6 -16.5
Whitray Beck tributary (2) 10 7.4 -16.4 0.4 -18.3
River Lune (2) 10 8.0 -18.7 0.3 -16.6
River Ribble (2) 10 8.0 -18.8 0.4 -18.2
Roudsea Wood (2) 10 7.4 -16.8 0.6 -16.7
Whitray Beck tributary (2) 15 7.4 -18.7 0.4 -18.3
River Lune (2) 15 8.0 -16.9 0.5 -16.6
Roudsea Wood (2) 15 7.4 -15.1 0.4 -15.1
Wad Hazel Sike (2) 15 7.8 -16.9 0.6 -16.7
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Figure captions
1

Fig 1 Comparison of filtered (0.7 µm) concentrations of organic carbon and concentrations 2

obtained following dialysis for one week.  Closed circles: dialysis at 3.5kDa; open circles: 3

10kDa; closed triangles: 15kDa.  The solid line is the 1:1 relationship.4

Fig 2 Activities of Fe3+ in dialysates calculated using WHAM/Model VI plotted against pH. 5

Closed circles: 3.5kDa pore size; open circles, 10kDa pore size; closed squares: 15kDa pore 6

size. The solid black line is the best fit regression (Equation (1)). The error bars represent ±1 7

standard deviation in log aFe3+ due to uncertainty in the 'active' proportion of DOM. The 8

dashed lines show the trends in activities predicted using standard solubility products of 105.09

(upper) and 102.5 (lower). 10

Fig 3 Comparison of predicted Fe3+ activities in this study with literature solubility studies. 11

The shaded area encompasses the 95% confidence interval on the prediction of Fe3+ activity 12

variation with pH, at 298K, according to Equations (2) and (4). Solid line: prediction of Fe3+13

activity variation with pH in the experiments of Byrne et al. (2005), aging time 15–60 minutes: 14

aFe3+ = 3.19(±0.06)−2.73(±0.01)·pH. Dashed line: prediction of Fe3+ activity variation with pH 15

in the experiments of Byrne and Luo (2000), aging time 15–60 minutes: 16

aFe3+ = 2.97(±0.06)−2.86(±0.01)·pH. Confidence intervals for these two lines are omitted for 17

clarity. Symbols: prediction of Fe3+ activity in the experiments of Liu and Millero (1999), aging 18

time 3 hours (squares) and 21 days (circles).19

Fig 4 Concentrations of Fe in ultrafiltrates and dialysates of literature studies (Section 4.4) 20

compared with Fe(III) in truly dissolved form, calculated using Equation (2) and WHAM/Model 21

VI. a: surface waters, not correcting aFe3+ for temperature. b: surface waters, correcting aFe3+22

for temperature. c: soil/ground waters, not correcting aFe3+ for temperature. d: soil/ground 23

waters, correcting aFe3+ for temperature. Error bars represent ±1 standard deviation in 24

predicted log [truly dissolved Fe(III)] due to uncertainty in the 'active' proportion of DOM. The 25

1:1 correspondence is indicated by a solid line. The dashed lines enclose the region 26

corresponding to a factor of three or lower discrepancy between observation and prediction.27

Fig 5 Top (a): observed Fe(III):DOM ratios in filtrates (0.7µm, open symbols) and dialysates 28

(closed symbols) of UK waters. Error bars represent ±1 standard deviation of dialysate 29

Fe(III):DOM ratios calculated as the mean of multiple experiments. The solid line is a generic 30

WHAM/Model VI prediction of the Fe(III):DOM ratio based on predictions of aFe3+ calculated 31

using Equation (1). Bottom (b): observed total Fe(III):DOM ratios in filtrates (0.7µm) of 32

samples taken during long term monitoring of Pool X (closed squares) and Pool Y (open 33

squares) from 1993–2001.34

Fig 6 Filterable (0.45µm) Fe:DOM ratios in surface water samples collected as part of the 35

LOIS project. a: River Trent; b: River Derwent; c: River Calder; d: River Ouse. The solid line is 36

the predicted Fe:DOM ratio, including Fe(II).37
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Fig 7 The predicted effect of neutralisation of an Fe(III) and DOM–rich water on the 1

concentration of 'truly dissolved' Fe(III). Speciation of a water having the composition of the 2

River Hodder of 13 November 2003, at a temperature of 283K, as the pH is increased by 3

increasing the total Ca concentration.4



Figure 1
Click here to download high resolution image

http://www.editorialmanager.com/aqua/download.aspx?id=3319&guid=2df6f123-1b6a-4b24-a38f-cff22843e200&scheme=1


Figure 2
Click here to download high resolution image

http://www.editorialmanager.com/aqua/download.aspx?id=3320&guid=a05a86f8-4535-4392-8dc3-b7400c7fad27&scheme=1


Figure 3
Click here to download high resolution image

http://www.editorialmanager.com/aqua/download.aspx?id=3328&guid=d6c07ce1-b818-4137-bace-c600046479ca&scheme=1


Figure 4
Click here to download high resolution image

http://www.editorialmanager.com/aqua/download.aspx?id=3329&guid=cfa88f7b-91bf-42cc-a71f-3c521ddb1a7c&scheme=1


Figure 5
Click here to download high resolution image

http://www.editorialmanager.com/aqua/download.aspx?id=3330&guid=803d065e-1a5a-4c93-87d1-722b38ffd7de&scheme=1


Figure 6
Click here to download high resolution image

http://www.editorialmanager.com/aqua/download.aspx?id=3331&guid=9f8296a9-b652-4c18-84eb-fe2ce4f696eb&scheme=1


Figure 7
Click here to download high resolution image

http://www.editorialmanager.com/aqua/download.aspx?id=3332&guid=8ce85a7c-48db-4220-b431-2c6b8cb6cd4f&scheme=1


Concentrations of Fe, organic C and Al in 3.5kDa dialysates
Sample site Latitude/Longitude Sample date (dd/mm/yy) Fe (ug dm-3) Fe(II) (ug dm-3)

Black Burn (BB) 54º47'11"N 2º27'20"W 2/26/2004 <2 2
Gais Gill (GG) 54º24'17"N 2º26'15"W 1/8/2004 19 9

Pool X (PX) 54º39'45"N 2º27'43"W 9/25/2003 174 not measured
Pool X (PX) 54º39'45"N 2º27'43"W 1/22/2004 49 10
Pool Y (PY) 54º39'45"N 2º27'43"W 9/25/2003 12 not measured

River Eden (RE) 54º23'13"N 2º20'14"W 1/8/2004 15 6
River Hodder (RH) 54º 1'34"N 2º27'12"W 11/17/2003 72 <2
River Hodder (RH) 54º 1'34"N 2º27'12"W 1/29/2004 5 5

River Lune (RL) 54º 4'34"N 2º43'50"W 1/29/2004 not measured not measured
River Ribble (RR) 53º45'56"N 2º38'25"W 11/24/2003 11 <2
River Ribble (RR) 53º45'56"N 2º38'25"W 1/29/2004 9 5

River Tees (RT) 54º39' 2"N 2º10'36"W 2/26/2004 3 3
Roudsea Wood (RW) 51º31' 6"N 4º24'30"W 11/14/2003 39 <2
Roudsea Wood (RW) 51º31' 6"N 4º24'30"W 2/18/2004 40 <2

Wad Hazel Sike (WHS) 54º42'38"N 2º19'11"W 2/26/2004 13 6
Whitray Beck tributary (WB) 54º 3'11"N 2º29'36"W 11/17/2003 17 2
Whitray Beck tributary (WB) 54º 3'11"N 2º29'36"W 1/29/2004 20 <2

Concentrations of Fe, organic C and Al in 3.5kDa dialysates
Click here to download table: Data 2.xls

http://www.editorialmanager.com/aqua/download.aspx?id=3321&guid=5261277b-e3cb-4493-bb19-35a264533f05&scheme=1


DOC (mg dm-3) monomeric Al (ug dm-3)
2.12 19
3.65 3
8.61 354

4.1 50
4.55 13
2.64 15
3.93 60
1.07 8
1.45 13
4.32 10
3.67 16
2.06 15
7.61 9
2.29 11
1.93 18
1.19 9
2.83 12



Concentrations of Fe, organic C and Al in 10kDa dialysates
Sample site Latitude/Longitude Sample date (dd/mm/yy) Fe (ug dm-3) Fe(II) (ug dm-3)

Black Burn (BB) 54º47'11"N 2º27'20"W 2/26/2004 2 6
Gais Gill (GG) 54º24'17"N 2º26'15"W 1/8/2004 9 5

Pool X (PX) 54º39'45"N 2º27'43"W 9/25/2003 299 <2
Pool X (PX) 54º39'45"N 2º27'43"W 1/22/2004 107 32
Pool Y (PY) 54º39'45"N 2º27'43"W 9/25/2003 15 <2
Pool Y (PY) 54º39'45"N 2º27'43"W 1/22/2004 21 <2

River Eden (RE) 54º23'13"N 2º20'14"W 1/8/2004 16 8
River Hodder (RH) 54º 1'34"N 2º27'12"W 11/17/2003 128 13
River Hodder (RH) 54º 1'34"N 2º27'12"W 1/29/2004 4 4

River Lune (RL) 54º 4'34"N 2º43'50"W 11/24/2003 18 <2
River Lune (RL) 54º 4'34"N 2º43'50"W 1/29/2004 4 2

River Ribble (RR) 53º45'56"N 2º38'25"W 11/24/2003 23 <2
River Ribble (RR) 53º45'56"N 2º38'25"W 1/29/2004 6 <2

River Tees (RT) 54º39' 2"N 2º10'36"W 2/26/2004 6 9
Roudsea Wood (RW) 51º31' 6"N 4º24'30"W 11/14/2003 81 <2
Roudsea Wood (RW) 51º31' 6"N 4º24'30"W 2/18/2004 26 <2

Wad Hazel Sike (WHS) 54º42'38"N 2º19'11"W 2/26/2004 7 7
Whitray Beck tributary (WB) 54º 3'11"N 2º29'36"W 11/17/2003 34 <2
Whitray Beck tributary (WB) 54º 3'11"N 2º29'36"W 1/29/2004 8 3

Concentrations of Fe, organic C and Al in 10kDa dialysates
Click here to download table: Data 3.xls
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DOC (mg dm-3) monomeric Al (ug dm-3)
2.93 20
2.21 5

11.24 381
6.06 69
7.77 22
4.02 13
2.55 10
5.97 90
0.98 8
3.14 12
2.12 11
5.32 14
4.77 18
2.94 17
15.2 10
5.78 11
2.91 20
3.25 34
1.35 11



Concentrations of Fe, organic C and Al in 15kDa dialysates
Sample site Latitude/Longitude Sample date (dd/mm/yy) Fe (ug dm-3) Fe(II) (ug dm-3)

Black Burn (BB) 54º47'11"N 2º27'20"W 2/26/2004 4 7
Gais Gill (GG) 54º24'17"N 2º26'15"W 1/8/2004 not measured not measured

Pool X (PX) 54º39'45"N 2º27'43"W 9/25/2003 not measured not measured
Pool X (PX) 54º39'45"N 2º27'43"W 1/22/2004 not measured not measured
Pool Y (PY) 54º39'45"N 2º27'43"W 9/25/2003 not measured not measured
Pool Y (PY) 54º39'45"N 2º27'43"W 1/22/2004 not measured not measured

River Eden (RE) 54º23'13"N 2º20'14"W 1/8/2004 not measured not measured
River Hodder (RH) 54º 1'34"N 2º27'12"W 11/17/2003 not measured not measured
River Hodder (RH) 54º 1'34"N 2º27'12"W 1/29/2004 5 3

River Lune (RL) 54º 4'34"N 2º43'50"W 11/24/2003 not measured not measured
River Lune (RL) 54º 4'34"N 2º43'50"W 1/29/2004 5 3

River Ribble (RR) 53º45'56"N 2º38'25"W 11/24/2003 not measured not measured
River Ribble (RR) 53º45'56"N 2º38'25"W 1/29/2004 no sample no sample

River Tees (RT) 54º39' 2"N 2º10'36"W 2/26/2004 2 8
Roudsea Wood (RW) 51º31' 6"N 4º24'30"W 11/14/2003 not measured not measured
Roudsea Wood (RW) 51º31' 6"N 4º24'30"W 2/18/2004 26 <2

Wad Hazel Sike (WHS) 54º42'38"N 2º19'11"W 2/26/2004 4 6
Whitray Beck tributary (WB) 54º 3'11"N 2º29'36"W 11/17/2003 not measured not measured
Whitray Beck tributary (WB) 54º 3'11"N 2º29'36"W 1/29/2004 6 <2

Concentrations of Fe, organic C and Al in 15kDa dialysates
Click here to download table: Data 4.xls
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DOC (mg dm-3) monomeric Al (ug dm-3)
2.77 18

not measured not measured
not measured not measured
not measured not measured
not measured not measured
not measured not measured
not measured not measured
not measured not measured

0.9 9
not measured not measured

2.32 4
not measured not measured

no sample no sample
2.8 17

not measured not measured
6.01 11
2.92 25

not measured not measured
1.85 11



Data1. Major water chemistry parameters at sampling sites.

Data2. Concentrations of Fe, organic C and Al in 3.5kDa dialysates.

Data3. Concentrations of Fe, organic C and Al in 10Da dialysates.

Data4. Concentrations of Fe, organic C and Al in 15kDa dialysates.

Data5. Generic predicted ratios of Fe(III):Dom for pH 3.0 to 9.0.
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Major water chemistry parameters at sampling sites
Sample site Latitude/Longitude Sample date  (dd/mm/yy) pHfield

Black Burn (BB) 54º47'11"N 2º27'20"W 2/26/2004 7.94
Gais Gill (GG) 54º24'17"N 2º26'15"W 1/8/2004 7.24

Pool X (PX) 54º39'45"N 2º27'43"W 9/25/2003 4.16
Pool X (PX) 54º39'45"N 2º27'43"W 1/22/2004 4.33
Pool Y (PY) 54º39'45"N 2º27'43"W 9/25/2003 5.82
Pool Y (PY) 54º39'45"N 2º27'43"W 1/22/2004 6.16

River Eden (RE) 54º23'13"N 2º20'14"W 1/8/2004 7.34
River Hodder (RH) 54º 1'34"N 2º27'12"W 11/17/2003 4.35
River Hodder (RH) 54º 1'34"N 2º27'12"W 1/29/2004 6.57

River Lune (RL) 54º 4'34"N 2º43'50"W 11/24/2003 7.79
River Lune (RL) 54º 4'34"N 2º43'50"W 1/29/2004 7.76

River Ribble (RR) 53º45'56"N 2º38'25"W 11/24/2003 8.14
River Ribble (RR) 53º45'56"N 2º38'25"W 1/29/2004 8.03

River Tees (RT) 54º39' 2"N 2º10'36"W 2/26/2004 8.05
Roudsea Wood (RW) 51º31' 6"N 4º24'30"W 11/14/2003 6.57
Roudsea Wood (RW) 51º31' 6"N 4º24'30"W 2/18/2004 6.82

Wad Hazel Sike (WHS) 54º42'38"N 2º19'11"W 2/26/2004 7.61
Whitray Beck tributary (WB) 54º 3'11"N 2º29'36"W 11/17/2003 6.37
Whitray Beck tributary (WB) 54º 3'11"N 2º29'36"W 1/29/2004 7.18

Major water chemistry parameters at sampling sites
Click here to download table: Data 1.xls

http://www.editorialmanager.com/aqua/download.aspx?id=3325&guid=29a68c9c-c2a2-45a0-ac42-97ef0e7874f8&scheme=1


pH final DOC (mg dm-3) Na (ueq dm-3) Mg (ueq dm-3) Ca (ueq dm-3) Cl (ueq dm-3) NO3 (ueq dm-3) SO4 (ueq dm-3)
8.03 5.8 173 91 590 177 14 73
7.25 6.9 130 52 97 118 2 33
4.28 20.6 202 42 148 158 <1 258
4.51 17.2 105 8 23 99 <1 19
6.92 19.4 153 24 241 154 <1 137
7.32 12 119 15 177 101 6 38
7.56 10.2 145 32 202 127 11 31
4.62 19.4 188 44 31 197 17 53

6.8 3.2 208 65 54 189 28 68
7.6 3.9 322 128 848 338 106 115

8.02 1.7 700 140 900 676 151 115
7.74 7.4 943 193 1395 592 197 292
7.96 5.4 3304 279 1440 3099 265 not measured
8.03 5.8 176 75 558 192 18 57
7.41 40.3 1226 172 538 1380 14 135

7.4 24.6 535 82 440 451 10 58
7.76 5.8 114 31 348 118 8 32

6.3 10.9 217 63 59 231 4 54
7.36 2.8 230 96 91 200 11 58



alklinity (ueq dm-3) total Fe (ug dm-3) total Fe(II) (ug dm-3) filtered Fe (ug dm-3) filtered Fe(II) (ug dm-3)
1090 191 5 182 30

203 108 9 91 <2
0 642 <2 not measured not measured
0 441 4 365 6

148 941 4 not measured not measured
230 314 5 188 <2
334 389 19 325 <2

0 818 <2 596 31
78 116 <2 102 <2

1565 83 <2 73 <2
1599 67 <2 48 <2
2503 195 <2 128 <2
2668 199 <2 94 <2
1024 186 4 173 32

732 387 5 376 13
790 298 <2 247 5
594 435 8 372 26

61 697 <2 689 21
240 157 <2 129 <2



total monomeric Al  (ug dm-3) total acid-reactive Al (ug dm-3)
16 40

5 26
427 409
160 132

60 181
55 113
24 52
63 257
33 76
15 17

4 15
27 27
13 31
14 24
82 28
84 110

5 56
39 115
11 36



Generic predicted ratios of Fe(III):Dom for pH 3.0 to 9.0

pH Fe(III):DOM (mol Fe(III) [g DOM]-1 Fe(III):DOM (µg Fe(III) [mg DOM]-1)
3.0 8.96E-03 1001
3.1 5.61E-03 627
3.2 3.61E-03 403
3.3 2.39E-03 267
3.4 1.62E-03 181
3.5 1.13E-03 126
3.6 8.15E-04 91.1
3.7 6.06E-04 67.7
3.8 4.63E-04 51.7
3.9 3.62E-04 40.4
4.0 2.90E-04 32.4
4.1 2.37E-04 26.4
4.2 1.97E-04 22.0
4.3 1.66E-04 18.5
4.4 1.42E-04 15.8
4.5 1.23E-04 13.7
4.6 1.07E-04 12.0
4.7 9.45E-05 10.6
4.8 8.42E-05 9.4
4.9 7.59E-05 8.5
5.0 6.91E-05 7.7
5.1 6.36E-05 7.1
5.2 5.88E-05 6.6
5.3 5.49E-05 6.1
5.4 5.15E-05 5.7
5.5 4.84E-05 5.4
5.6 4.58E-05 5.1
5.7 4.33E-05 4.8
5.8 4.10E-05 4.6
5.9 3.90E-05 4.4
6.0 3.71E-05 4.1
6.1 3.54E-05 4.0
6.2 3.38E-05 3.8
6.3 3.23E-05 3.6
6.4 3.10E-05 3.5
6.5 2.98E-05 3.3
6.6 2.90E-05 3.2
6.7 2.83E-05 3.2
6.8 2.81E-05 3.1
6.9 2.81E-05 3.1
7.0 2.81E-05 3.1
7.1 2.82E-05 3.1
7.2 2.79E-05 3.1
7.3 2.73E-05 3.0
7.4 2.62E-05 2.9
7.5 2.49E-05 2.8
7.6 2.33E-05 2.6
7.7 2.15E-05 2.4
7.8 1.97E-05 2.2
7.9 1.77E-05 2.0
8.0 1.59E-05 1.8
8.1 1.42E-05 1.6
8.2 1.26E-05 1.4
8.3 1.13E-05 1.3
8.4 1.02E-05 1.1
8.5 9.36E-06 1.0
8.6 8.68E-06 1.0
8.7 8.15E-06 0.91
8.8 7.75E-06 0.87
8.9 7.41E-06 0.83

Generic predicted ratios of Fe(III) to DOM for pH 3.0 to 9.0
Click here to download table: Data 5.xls

http://www.editorialmanager.com/aqua/download.aspx?id=3326&guid=3399e554-87b8-46e8-b93a-037b85180d1c&scheme=1


9.0 7.12E-06 0.80
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