47 research outputs found

    Age-related mitochondrial DNA depletion and the impact on pancreatic beta cell function

    Get PDF
    Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes

    Neglected tropical disease elimination is a relay race - let's not drop the baton

    Get PDF
    The timelines for eliminating neglected tropical diseases (NTDs) are relatively short in comparison to the millennia that these diseases have plagued communities, yet within our lifetime, several countries have successfully eliminated diseases through focused and concerted public health campaigns. As in a relay race, the winning team is not necessarily the fastest, but the one that runs consistently from start to finish without dropping the baton. In the race to eliminate NTDs there are certain moments when the baton needs to be passed, particularly when donor funding ends or when countries transition to new phases in the elimination framework, such as transitioning from mass drug administration (MDA) campaigns to a period of post-treatment surveillance. Regardless of how effectively and efficiently an individual runs his/her leg of the relay, the baton eventually needs to be passed to the next recipient. The challenge is maintaining momentum. National programmes that are successful in eliminating NTDs will be so because they have become efficient in the transition (handovers), although some disruptions may test even the most efficient and committed team. The coronavirus disease 2019 (COVID-19) pandemic is just one example, but civil unrest, natural disasters, climate events and political instability are other well-defined impediments to successful public health campaigns

    Elimination of Schistosomiasis Transmission in Zanzibar: Baseline Findings before the Onset of a Randomized Intervention Trial.

    Get PDF
    Gaining and sustaining control of schistosomiasis and, whenever feasible, achieving local elimination are the year 2020 targets set by the World Health Organization. In Zanzibar, various institutions and stakeholders have joined forces to eliminate urogenital schistosomiasis within 5 years. We report baseline findings before the onset of a randomized intervention trial designed to assess the differential impact of community-based praziquantel administration, snail control, and behavior change interventions. In early 2012, a baseline parasitological survey was conducted in ∼20,000 people from 90 communities in Unguja and Pemba. Risk factors for schistosomiasis were assessed by administering a questionnaire to adults. In selected communities, local knowledge about schistosomiasis transmission and prevention was determined in focus group discussions and in-depths interviews. Intermediate host snails were collected and examined for shedding of cercariae. The baseline Schistosoma haematobium prevalence in school children and adults was 4.3% (range: 0-19.7%) and 2.7% (range: 0-26.5%) in Unguja, and 8.9% (range: 0-31.8%) and 5.5% (range: 0-23.4%) in Pemba, respectively. Heavy infections were detected in 15.1% and 35.6% of the positive school children in Unguja and Pemba, respectively. Males were at higher risk than females (odds ratio (OR): 1.45; 95% confidence interval (CI): 1.03-2.03). Decreasing adult age (OR: 1.04; CI: 1.02-1.06), being born in Pemba (OR: 1.48; CI: 1.02-2.13) or Tanzania (OR: 2.36; CI: 1.16-4.78), and use of freshwater (OR: 2.15; CI: 1.53-3.03) showed higher odds of infection. Community knowledge about schistosomiasis was low. Only few infected Bulinus snails were found. The relatively low S. haematobium prevalence in Zanzibar is a promising starting point for elimination. However, there is a need to improve community knowledge about disease transmission and prevention. Control measures tailored to the local context, placing particular attention to hot-spot areas, high-risk groups, and individuals, will be necessary if elimination is to be achieved

    Genome-wide association study of antidepressant treatment resistance in a population-based cohort using health service prescription data and meta-analysis with GENDEP

    Get PDF
    Antidepressants demonstrate modest response rates in the treatment of major depressive disorder (MDD). Despite previous genome-wide association studies (GWAS) of antidepressant treatment response, the underlying genetic factors are unknown. Using prescription data in a population and family-based cohort (Generation Scotland: Scottish Family Health Study; GS:SFHS), we sought to define a measure of (a) antidepressant treatment resistance and (b) stages of antidepressant resistance by inferring antidepressant switching as non-response to treatment. GWAS were conducted separately for antidepressant treatment resistance in GS:SFHS and the Genome-based Therapeutic Drugs for Depression (GENDEP) study and then meta-analysed (meta-analysis n = 4213, cases = 358). For stages of antidepressant resistance, a GWAS on GS:SFHS only was performed (n = 3452). Additionally, we conducted gene-set enrichment, polygenic risk scoring (PRS) and genetic correlation analysis. We did not identify any significant loci, genes or gene sets associated with antidepressant treatment resistance or stages of resistance. Significant positive genetic correlations of antidepressant treatment resistance and stages of resistance with neuroticism, psychological distress, schizotypy and mood disorder traits were identified. These findings suggest that larger sample sizes are needed to identify the genetic architecture of antidepressant treatment response, and that population-based observational studies may provide a tractable approach to achieving the necessary statistical power

    Estimation of changes in the force of infection for intestinal and urogenital schistosomiasis in countries with Schistosomiasis Control Initiative-assisted programmes

    Get PDF
    The last decade has seen an expansion of national schistosomiasis control programmes in Africa based on large-scale preventative chemotherapy. In many areas this has resulted in considerable reductions in infection and morbidity levels in treated individuals. In this paper, we quantify changes in the force of infection (FOI), defined here as the per (human) host parasite establishment rate, to ascertain the impact on transmission of some of these programmes under the umbrella of the Schistosomiasis Control Initiative (SCI)

    A Combined Pathway and Regional Heritability Analysis Indicates NETRIN1 Pathway is Associated with Major Depressive Disorder

    Get PDF
    AbstractBackgroundGenome-wide association studies (GWASs) of major depressive disorder (MDD) have identified few significant associations. Testing the aggregation of genetic variants, in particular biological pathways, may be more powerful. Regional heritability analysis can be used to detect genomic regions that contribute to disease risk.MethodsWe integrated pathway analysis and multilevel regional heritability analyses in a pipeline designed to identify MDD-associated pathways. The pipeline was applied to two independent GWAS samples [Generation Scotland: The Scottish Family Health Study (GS:SFHS, N = 6455) and Psychiatric Genomics Consortium (PGC:MDD) (N = 18,759)]. A polygenic risk score (PRS) composed of single nucleotide polymorphisms from the pathway most consistently associated with MDD was created, and its accuracy to predict MDD, using area under the curve, logistic regression, and linear mixed model analyses, was tested.ResultsIn GS:SFHS, four pathways were significantly associated with MDD, and two of these explained a significant amount of pathway-level regional heritability. In PGC:MDD, one pathway was significantly associated with MDD. Pathway-level regional heritability was significant in this pathway in one subset of PGC:MDD. For both samples the regional heritabilities were further localized to the gene and subregion levels. The NETRIN1 signaling pathway showed the most consistent association with MDD across the two samples. PRSs from this pathway showed competitive predictive accuracy compared with the whole-genome PRSs when using area under the curve statistics, logistic regression, and linear mixed model.ConclusionsThese post-GWAS analyses highlight the value of combining multiple methods on multiple GWAS data for the identification of risk pathways for MDD. The NETRIN1 signaling pathway is identified as a candidate pathway for MDD and should be explored in further large population studies

    Genome-wide regional heritability mapping identifies a locus within the<i> TOX2</i> gene associated with Major Depressive Disorder

    Get PDF
    Background: Major depressive disorder (MDD) is the second largest cause of global disease burden. It has an estimated heritability of 37%, but published genome-wide association studies have so far identified few risk loci. Haplotype-block-based regional heritability mapping (HRHM) estimates the localized genetic variance explained by common variants within haplotype blocks, integrating the effects of multiple variants, and may be more powerful for identifying MDD-associated genomic regions. Methods: We applied HRHM to Generation Scotland: The Scottish Family Health Study, a large family- and population-based Scottish cohort (N = 19,896). Single-single nucleotide polymorphism (SNP) and haplotype-based association tests were used to localize the association signal within the regions identified by HRHM. Functional prediction was used to investigate the effect of MDD-associated SNPs within the regions. Results: A haplotype block across a 24-kb region within the TOX2 gene reached genome-wide significance in HRHM. Single-SNP- and haplotype-based association tests demonstrated that five of nine genotyped SNPs and two haplotypes within this block were significantly associated with MDD. The expression of TOX2 and a brain-specific long noncoding RNA RP1-269M15.3 in frontal cortex and nucleus accumbens basal ganglia, respectively, were significantly regulated by MDD-associated SNPs within this region. Both the regional heritability and single-SNP associations within this block were replicated in the UK–Ireland group of the most recent release of the Psychiatric Genomics Consortium (PGC), the PGC2–MDD (Major Depression Dataset). The SNP association was also replicated in a depressive symptom sample that shares some individuals with the PGC2–MDD. Conclusions: This study highlights the value of HRHM for MDD and provides an important target within TOX2 for further functional studies

    Insulin resistance:Genetic associations with depression and cognition in population based cohorts

    Get PDF
    We are grateful to the families who took part in GS:SFHS, general practitioners and the Scottish School of Primary Care for their help in recruitment, and the whole GS:SFHS team that includes academic researchers, clinic staff, laboratory technicians, clerical workers, IT staff, statisticians and research managers. The research reported here, and the genotyping of GS:SFHS samples was funded by the Wellcome Trust, (Wellcome Trust Strategic Award ‘STratifying Resilience and Depression Longitudinally’ (STRADL) Reference 104036/Z/14/Z) and by the Medical Research Council. SF acknowledges support from the National Institute of Mental Health, USA (R01MH113619; R01MH116147) and the consortium for Psychopathology and Allostatic load across the Life Span (PALS; https://www.pals-network.org) AMM acknowledges the financial support received from the Dr. Mortimer and Theresa Sackler Foundation. IJD and AMM are members of The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992/1). Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates (CZD/16/6) and the Scottish Funding Council (HR03006). Funding from the Biotechnology and Biological Sciences Research Council and Medical Research Council is gratefully acknowledged.Peer reviewedPublisher PD

    Mapping Helminth Co-Infection and Co-Intensity: Geostatistical Prediction in Ghana

    Get PDF
    Urinary schistosomiasis and hookworm infections cause considerable morbidity in school age children in West Africa. Severe morbidity is predominantly observed in individuals infected with both parasite types and, in particular, with heavy infections. We investigated for the first time the distribution of S. haematobium and hookworm co-infections and distribution of co-intensity of these parasites in Ghana. Bayesian geostatistical models were developed to generate a national co-infection map and national intensity maps for each parasite, using data on S. haematobium and hookworm prevalence and egg concentration (expressed as eggs per 10 mL of urine for S. haematobium and expressed as eggs per gram of faeces for hookworm), collected during a pre-intervention baseline survey in Ghana, 2008. In contrast with previous findings from the East Africa region, we found that both S. haematobium and hookworm infections are highly focal, resulting in small, localized clusters of co-infection and areas of high co-intensity. Overlaying on a single map the co-infection and the intensity of multiple parasite infections allows identification of areas where parasite environmental contamination and morbidity are at its highest, while providing an evidence base for the assessment of the progress of successive rounds of mass drug administration (MDA) in integrated parasitic disease control programs

    The oncogenic transcription factor RUNX1/ETO corrupts cell cycle regulation to drive leukemic transformation

    Get PDF
    Oncogenic transcription factors such as the leukemic fusion protein RUNX1/ETO, which drives t(8;21) acute myeloid leukemia (AML), constitute cancer-specific but highly challenging therapeutic targets. We used epigenomic profiling data for an RNAi screen to interrogate the transcriptional network maintaining t(8;21) AML. This strategy identified Cyclin D2 (CCND2) as a crucial transmitter of RUNX1/ETO-driven leukemic propagation. RUNX1/ETO cooperates with AP-1 to drive CCND2 expression. Knockdown or pharmacological inhibition of CCND2 by an approved drug significantly impairs leukemic expansion of patient-derived AML cells and engraftment in immunodeficient murine hosts. Our data demonstrate that RUNX1/ETO maintains leukemia by promoting cell cycle progression and identifies G1 CCND-CDK complexes as promising therapeutic targets for treatment of RUNX1/ETO-driven AML
    corecore