73 research outputs found

    Pulsar Constraints on Neutron Star Structure and Equation of State

    Full text link
    With the aim of constraining the structural properties of neutron stars and the equation of state of dense matter, we study sudden spin-ups, glitches, occurring in the Vela pulsar and in six other pulsars. We present evidence that glitches represent a self-regulating instability for which the star prepares over a waiting time. The angular momentum requirements of glitches in Vela indicate that at least 1.4% of the star's moment of inertia drives these events. If glitches originate in the liquid of the inner crust, Vela's `radiation radius' must exceed ~12 km for a mass of 1.4 solar masses. Observational tests of whether other neutron stars obey this constraint will be possible in the near future.Comment: 5 pages, including figures. To appear in Physical Review Letter

    Whales as marine ecosystem engineers

    Get PDF
    Baleen and sperm whales, known collectively as the great whales, include the largest animals in the history of life on Earth. With high metabolic demands and large populations, whales probably had a strong influence on marine ecosystems before the advent of industrial whaling: as consumers of fish and invertebrates; as prey to other large-bodied predators; as reservoirs of and vertical and horizontal vectors for nutrients; and as detrital sources of energy and habitat in the deep sea. The decline in great whale numbers, estimated to be at least 66% and perhaps as high as 90%, has likely altered the structure and function of the oceans, but recovery is possible and in many cases is already underway. Future changes in the structure and function of the world\u27s oceans can be expected with the restoration of great whale populations

    Precession of isolated neutron stars I: Effects of imperfect pinning

    Full text link
    We consider the precession of isolated neutron stars in which superfluid is not pinned to the stellar crust perfectly. In the case of perfect pinning, Shaham (1977) showed that there are no slowly oscillatory, long-lived modes. When the assumption of perfect pinning is relaxed, new modes are found that can be long-lived, but are expected to be damped rather than oscillatory, unless the drag force on moving superfluid vortex lines has a substantial component perpendicular to the direction of relative motion. The response of a neutron star to external torques, such as the spindown torque, is also treated. We find that when computing the response of a star to perturbations, assuming perfect coupling of superfluid to normal matter from the start can miss some effects.Comment: 38 pages, uses aaspp4.sty, minor corrections; Final version to be published in Ap

    Gamma-Ray and Radio Observations of PSR B1509-58

    Get PDF
    Abstract : We report concurrent radio and gamma-ray observations of PSR B1509-58 carried out by the Parkes Radio Telescope and by the Burst and Transient Source Experiment (BATSE) and the Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Gamma Ray Observatory (CGRO-Gamma-ray light curves fitted at several energies between ~ 20-500 keV yield a phase offset with respect to the radio pulse that is independent of energy, with an average value 0.32 plus or minus 0.02. Although this value is larger by 0.07 than that reported by Kawai et al., the difference is not statistically significant (only~2 sigma) when account is taken of the uncertainty associated with their result. We briefly discuss the possibility that the energy-independence of the gamma-ray pulse phase is a signature of non-thermal radiation in the X-ray/gamma-ray range and the suggestion of a dependence of pulsar radio-gamma-ray phase offset on pulse period

    Numérique : impact sur le cycle de vie du document (Le)

    Get PDF
    Actes du colloque "Le numérique : impact sur le cycle de vie du document" organisé à l\u27université de Montréal par l\u27EBSI et l\u27ENSSIB du 13 au 15 octobre 2004. Son objectif était de traiter de façon interdisciplinaire la problématique suivante : « La numérisation, la diffusion des formats numériques originaux, les nouvelles méthodes d\u27indexation et d\u27analyse du document ainsi que le fonctionnement en réseau changent les données de base de la vie du document qui devient une sorte de phénix incessamment renaissant » (programme du colloque)

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    Validation of the Body Concealment Scale for Scleroderma (BCSS): Replication in the Scleroderma Patient-centered Intervention Network (SPIN) Cohort

    Get PDF
    © 2016 Elsevier Ltd Body concealment is an important component of appearance distress for individuals with disfiguring conditions, including scleroderma. The objective was to replicate the validation study of the Body Concealment Scale for Scleroderma (BCSS) among 897 scleroderma patients. The factor structure of the BCSS was evaluated using confirmatory factor analysis and the Multiple-Indicator Multiple-Cause model examined differential item functioning of SWAP items for sex and age. Internal consistency reliability was assessed via Cronbach's alpha. Construct validity was assessed by comparing the BCSS with a measure of body image distress and measures of mental health and pain intensity. Results replicated the original validation study, where a bifactor model provided the best fit. The BCSS demonstrated strong internal consistency reliability and construct validity. Findings further support the BCSS as a valid measure of body concealment in scleroderma and provide new evidence that scores can be compared and combined across sexes and ages

    Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data

    Get PDF
    This paper presents results of an all-sky searches for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative ranges of [-2 x 10^-9, 1.1 x 10^-10] Hz/s for the fifth LIGO science run (S5). The novelty of the search lies in the use of a non-coherent technique based on the Hough-transform to combine the information from coherent searches on timescales of about one day. Because these searches are very computationally intensive, they have been deployed on the Einstein@Home distributed computing project infrastructure. The search presented here is about a factor 3 more sensitive than the previous Einstein@Home search in early S5 LIGO data. The post-processing has left us with eight surviving candidates. We show that deeper follow-up studies rule each of them out. Hence, since no statistically significant gravitational wave signals have been detected, we report upper limits on the intrinsic gravitational wave amplitude h0. For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h0 greater than 7.6 x 10^-25 with a 90% confidence level.Comment: 29 pages, 14 figures, 6 tables. Science summary page at http://www.ligo.org/science/Publication-FullS5EatH/index.php ; Public access area to figures and tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120002

    Gamma-ray and radio properties of six pulsars detected by the fermi large area telescope

    Get PDF
    We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
    corecore