378 research outputs found

    Timing analysis of the isolated neutron star RX J0720.4-3125

    Full text link
    We present a combined analysis of XMM-Newton, Chandra and Rosat observations of the isolated neutron star RXJ0720.4-3125, spanning a total period of \sim 7 years. We develop a maximum likelihood periodogramme for our analysis based on the \Delta C-statistic and the maximum likelihood method, which are appropriate for the treatment of sparse event lists. Our results have been checked "a posteriori" by folding a further BeppoSAX dataset with the period predicted at the time of that observation: the phase is found to be consistent. The study of the spin history and the measure of the spin-down rate is of extreme importance in discriminating between the possible mechanisms suggested for the nature of the X-ray emission. The value of \dot P, here measured for the first time, is \approx 10^{-14} s/s. This value can not be explained in terms of torque from a fossil disk. When interpreted in terms of dipolar losses, it gives a magnetic field of B \approx 10^{13} G, making also implausible that the source is accreting from the underdense surroundings. On the other hand, we also find unlikely that the field decayed from a much larger value (B\approx 10^{15} G, as expected for a magnetar powered by dissipation of a superstrong field) since this scenario predicts a source age of \approx 10^4 yrs, too young to match the observed X-ray luminosity. The observed properties are more compatible with a scenario in which the source is \approx 10^6 yrs old, and its magnetic field has not changed substantially over the lifetime.Comment: 11 Pages, 6 Figures. Accepted for publication in MNRA

    Space radiation environment effects on X-ray CCD background

    Get PDF
    Charge coupled devices (CCDs) are often employed as the detector of choice for observing X-rays in space. The instrument background experienced in orbit has a major impact on the overall sensitivity of the camera system. The instrument background for the European Space Agency X-ray Multi Mirror (XMM-Newton) mission was found to be much greater in orbit than that originally predicted prelaunch, the reasons for which still being up for discussion. The Geant4 toolkit provides a framework for Monte Carlo simulations in a variety of areas in science and is used here to simulate the instrument background for several CCD based detectors in-orbit in order to gain a further insight into the formation of the instrument background continuum. The missions discussed in this paper include the ESA XMM-Newton mission, the NASA Swift mission and the Japanese Space Agency Suzaku mission. These three missions allow a comparison between the effects of both the mission orbit and the detector construction on the instrument background count-rate. Analysis of the results from the simulation lead to the conclusion that knock-on electrons, produced when protons pass through the shielding, dominate the instrument background continuum at the XMM-Newton Highly Elliptical Orbit (HEO) with a perigee and apogee of approximately 7000 and 120 000 km respectively, forming an additional background component not considered in the pre-launch study. The surface properties of the detector and shielding have the greatest impact on the level of the instrument background due to the interaction length of the knock-on electrons produced. At the Low Earth Orbit (LEO) of Swift and Suzaku at approximately 600 km, the impact of the knock-on electrons is reduced due to the differing in-flux of protons, and the form of the instrument background can vary greatly with the detector construction. The inconsistencies between this study and the pre-launch simulations are discussed. Sensitivity considerations regarding the instrument background are deliberated with a view towards future missions

    XMM−NewtonXMM-Newton Ω\Omega project: III. Gas mass fraction shape in high redshift clusters

    Full text link
    We study the gas mass fraction, f_gas,f\_{\rm gas}, behavior in XMM−NewtonXMM-Newton Ω\Omega project. The typical f_gasf\_{\rm gas} shape of high redshift galaxy clusters follows the global shape inferred at low redshift quite well. This result is consistent with the gravitational instability picture leading to self similar structures for both the dark and baryonic matter. However, the mean f_gasindistantclustersshowssomedifferencestolocalones,indicatingadeparturefromstrictscaling.Thisresultisconsistentwiththeobservedevolutionintheluminosity−temperaturerelation.Wequantitativelyinvestigatethisdeparturefromscalinglaws.Withinthelocalsampleweused,amoderatebutclearvariationoftheamplitudeofthegasmassfractionwithtemperatureisfound,atrendthatweakensintheouterregions.Thesevariationsdonotexplaindeparturefromscalinglawsofourdistantclusters.Animportantimplicationofourresultsisthatthegasfractionevolution,atestofthecosmologicalparameters,canleadtobiasedvalueswhenappliedatradiismallerthanthevirialradius.Fromourf\_{\rm gas} in distant clusters shows some differences to local ones, indicating a departure from strict scaling. This result is consistent with the observed evolution in the luminosity-temperature relation. We quantitatively investigate this departure from scaling laws. Within the local sample we used, a moderate but clear variation of the amplitude of the gas mass fraction with temperature is found, a trend that weakens in the outer regions. These variations do not explain departure from scaling laws of our distant clusters. An important implication of our results is that the gas fraction evolution, a test of the cosmological parameters, can lead to biased values when applied at radii smaller than the virial radius. From our XMM$ clusters, the apparent gas fraction at the virial radius is consistent with a non-evolving universal value in a high matter density model and not with a concordance.Comment: Accepted, A&A, in pres

    XMM-Newton observation of the relaxed cluster A478: gas and dark matter distribution from 0.01 R_200 to 0.5 R_200

    Full text link
    We present an \xmm mosaic observation of the hot (kT∌6.5kT\sim6.5 keV) and nearby (z=0.0881z=0.0881) relaxed cluster of galaxies A478. We derive precise gas density, gas temperature, gas mass and total mass profiles up to 12\arcmin (about half of the virial radius R200R_{200}). The gas density profile is highly peaked towards the center and the surface brightness profile is well fitted by a sum of three ÎČ\beta--models. The derived gas density profile is in excellent agreement, both in shape and in normalization, with the published Chandra density profile (measured within 5\arcmin of the center). Projection and PSF effects on the temperature profile determination are thoroughly investigated. The derived radial temperature structure is as expected for a cluster hosting a cooling core, with a strong negative gradient at the cluster center. The temperature rises from ∌2\sim2 keV up to a plateau of ∌6.5\sim6.5 keV beyond 2' (i.e. r>208kpc=0.1R200r>208\rm{kpc}=0.1 R_{200}, R200=2.08R_{200}=2.08 Mpc being the virial radius). From the temperature profile and the density profile and under the hypothesis of hydrostatic equilibrium, we derived the total mass profile of A478 down to 0.01 and up to 0.5 the virial radius. We tested different dark matter models against the observed mass profile. The Navarro, Frenk & White (\cite{navarro97}) model is significantly preferred to other models. It leads to a total mass of M200=1.1×1015M_{200}=1.1\times 10^{15} M⊙_\odot for a concentration parameter of c=4.2±0.4c=4.2\pm0.4. The gas mass fraction slightly increases with radius. The gas mass fraction at a density contrast of ÎŽ=2500\delta=2500 is \fgas=0.13\pm0.02, consistent with previous results on similar hot and massive clusters. We confirm the excess of absorption in the direction of A478.[abridged]Comment: 15 pages, 11 figures, accepted for publication in A&A, corrected typo

    The structural and scaling properties of nearby galaxy clusters: I - The universal mass profile

    Full text link
    We present the integrated mass profiles for a sample of ten nearby (z<=0.15), relaxed galaxy clusters, covering a temperature range of [2-9]keV, observed with XMM-Newton. The mass profiles were derived from the observed gas density and temperature profiles under the hypothesis of spherical symmetry and hydrostatic equilibrium. All ten mass profiles are well described by an NFW-type profile over the radial range from 0.01 to 0.5 R_200, where R_200 is the radius corresponding to a density contrast of 200 with respect to the critical density at the cluster redshift. A King model is inconsistent with these data. The derived concentration parameters and total masses are in the range c_200=4-6 and M_200=1.2 10^14-1.2 10^15 Msol, respectively. Our qualitative and quantitative study of the mass profile shape shows, for the first time, direct and clear observational evidence for the universality of the total mass distribution in clusters. The mass profiles scaled in units of R_200 and M_200 nearly coincide, with a dispersion of less than 15% at 0.1 R_200. The c_200--M_200 relation is consistent with the predictions of numerical simulations for a LCDM cosmology, taking into account the measurement errors and expected intrinsic scatter. Our results provide further strong evidence in favour of the Cold Dark Matter cosmological scenario and show that the dark matter collapse is well understood at least down to the cluster scale.Comment: 8 pages, 5 figures. Accepted for publication in A&

    A brain-based pain facilitation mechanism contributes to painful diabetic polyneuropathy.

    Get PDF
    The descending pain modulatory system represents one of the oldest and most fundamentally important neurophysiological mechanisms relevant to pain. Extensive work in animals and humans has shown how a functional imbalance between the facilitatory and inhibitory components is linked to exacerbation and maintenance of persistent pain states. Forward translation of these findings into clinical populations is needed to verify the relevance of this imbalance. Diabetic polyneuropathy is one of the most common causes of chronic neuropathic pain; however, the reason why ∌25–30% of patients with diabetes develop pain is not known. The current study used a multimodal clinical neuroimaging approach to interrogate whether the sensory phenotype of painful diabetic polyneuropathy involves altered function of the ventrolateral periaqueductal grey—a key node of the descending pain modulatory system. We found that ventrolateral periaqueductal grey functional connectivity is altered in patients suffering from painful diabetic polyneuropathy; the magnitude of which is correlated to their spontaneous and allodynic pain as well as the magnitude of the cortical response elicited by an experimental tonic heat paradigm. We posit that ventrolateral periaqueductal grey-mediated descending pain modulatory system dysfunction may reflect a brain-based pain facilitation mechanism contributing to painful diabetic polyneuropathy.Funding for this work was generously provided from the following sources: National Institute for Health Research Oxford Biomedical Research Centre, Medical Research Council of Great Britain and Northern Ireland, the Wellcome Trust (London, UK) and the Innovative Medicines Initiative Joint Undertaking (Brussels, Belgium), under grant agreement no 115007 resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies’ in kind contribution. D.L.B. and A.C.T. are members of the DOLORisk consortium funded by the European Commission Horizon 2020 (ID633491). D.L.B. and A.C.T. are members of the International Diabetic Neuropathy Consortium, the Novo Nordisk Foundation (Ref. NNF14SA0006). D.L.B. is a senior Wellcome clinical scientist (Ref. 202747/Z/16/Z). The project was supported by a strategic award from the Wellcome (Ref. 102645). A.R.S., D.L.B., and I.T. are members of the Wellcome Pain Consortium (Ref. 102645). A.C.T. is an Honorary Research Fellow of the Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

    Unveiling the nature of the highly obscured AGN in NGC5643 with XMM-Newton

    Full text link
    We present results from an XMM-Newton observation of the nearby Seyfert 2 galaxy NGC5643. The nucleus exhibits a very flat X-ray continuum above 2 keV, together with a prominent K-alpha fluorescent iron line. This indicates heavy obscuration. We measure an absorbing column density N_H in the range 6-10 x 10^{23} atoms/cm/cm, either directly covering the nuclear emission, or covering its Compton-reflection. In the latter case, we might be observing a rather unusual geometry for the absorber, whereby reflection from the inner far side of a torus is in turn obscured by its near side outer atmosphere. The nuclear emission might be then either covered by a Compton-thick absorber, or undergoing a transient state of low activity. A second source (christened "X-1" in this paper) at the outskirts of NGC5643 optical surface outshines the nucleus in X-rays. If belonging to NGC5643, it is the third brightest (L_X ~ 4 x 10^{40} erg/s) known Ultra Luminous X-ray source. Comparison with past large aperture spectra of NGC 5643 unveils dramatic X-ray spectral changes above 1 keV. We interpret them as due to variability of the active nucleus and of source X-1 intrinsic X-ray powers by a factor >10 and 5, respectively.Comment: 11 LATEX pages, 12 figures, to appear in Monthly Notices of the Royal Astronomical Societ
    • 

    corecore