52 research outputs found
Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.
PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study
PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
A Meta-analysis of Gene Expression Signatures of Blood Pressure and Hypertension
Genome-wide association studies (GWAS) have uncovered numerous genetic variants (SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p<0.05). Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%–9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension
Paramedic Acute Stroke Treatment Assessment (PASTA): study protocol for a randomised controlled trial
BACKGROUND: Despite evidence from clinical trials that intravenous (IV) thrombolysis is a cost-effective treatment for selected acute ischaemic stroke patients, there remain large variations in the rate of IV thrombolysis delivery between stroke services. This study is evaluating whether an enhanced care pathway delivered by paramedics (the Paramedic Acute Stroke Treatment Assessment (PASTA)) could increase the number of patients who receive IV thrombolysis treatment. METHODS: Study design: Cluster randomised trial with economic analysis and parallel process evaluation. SETTING: National Health Service ambulance services, emergency departments and hyper-acute stroke units within three geographical regions of England and Wales. Randomisation: Ambulance stations within each region are the units of randomisation. According to station allocation, paramedics based at a station deliver the PASTA pathway (intervention) or continue with standard stroke care (control). Study intervention: The PASTA pathway includes structured pre-hospital information collection, prompted pre-notification, structured handover of information in hospital and assistance with simple tasks during the initial hospital assessment. Study-trained intervention group paramedics deliver this pathway to adults within 4 h of suspected stroke onset. Study control: Standard stroke care according to national and local guidelines for the pre-hospital and hospital assessment of suspected stroke. PARTICIPANTS: Participants enrolled in the study are adults with confirmed stroke who were assessed by a study paramedic within 4 h of symptom onset. PRIMARY OUTCOME: Proportion of participants receiving IV thrombolysis. SAMPLE SIZE: 1297 participants provide 90% power to detect a 10% difference in the proportion of patients receiving IV thrombolysis. DISCUSSION: The results from this trial will determine whether an enhanced care pathway delivered by paramedics can increase thrombolysis delivery rates. TRIAL REGISTRATION: ISRCTN registry, ISRCTN12418919 . Registered on 5 November 2015
Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study
Purpose:
Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom.
Methods:
Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded.
Results:
The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia.
Conclusion:
We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes
Nutrient levels in sea and river water along the Coral Coast of Viti Levu, Fiji
Nutrient (nitrate and phosphate) levels potentially damaging to coral reefs have been detected at several sites along the Coral Coast of Viti Levu, Fiji. Nutrient concentrations were determined using standard techniques on an autoanalyser capable of measuring to sub-micromolar levels. The mean nitrate level for 34 seawater samples was 1.69 mM and the mean phosphate level was 0.21 mM which exceeded levels considered to be harmful to coral reef ecosystems (>1.0 mM N, >0.1 mM P). It is proposed that these elevated nutrient levels coupled with overfishing of herbivore species have contributed to the recent widespread growth of macro -algae species along this coast. Nutrient levels were highest at sites located near hotels and other populated sites. At sites not significantly influenced by human activity, levels were comparable to that of non-polluted sites elsewhere in Fiji. Concentrations of nutrients in rivers along the coast were generally higher than in seawater. Urgent action is needed at community, regional and government levels to try and reduce the nutrient inputs to this coast
Modelling the effects of cracking of lake sediments during drying on acid generation and acid transport to the water column upon rewetting
An extreme “millennium” drought from 2007 to 2010 resulted in the lowest River Murray levels (1.75 m decline from average) in over 90 years of records at the end of the river system in South Australia. This resulted in low inflows of water to Lake Alexandrina and Lake Albert and exposed large areas of soils on the lake margins to drying. This drying caused the sediments to shrink and crack with the formation of large columnar blocks of soil. Sediment physical properties were measured on samples taken from the lake at different locations (Cook et al., 2011) and used to develop a HYDRUS2D/3D model to determine the oxygen penetration into cylindrical peds (soil blocks) with varying radii (0.05, 0.1, 0.15 m), depth of cracks (0.1, 0.2, 0.5 m) and water table depth (WTD) (0.1, 0.2, 0.5, 1.0 m). The peds were assumed to be initially saturated and lost water due to drainage (to the water table) and evaporation (potential 4 mm day), from both the top and sides of the ped. Oxygen (O2) penetrated the peds due to gas advection (as water was lost), and diffusion, and was lost due to oxygen consumption by organic matter (98% of the sink strength) and pyrite (2%). This drying and oxygenation process was modelled for 1000 days and the O concentrations recorded. O penetrated to the center of the ped at the sediment surface, but the radial penetration decreased with depth (Figure 1) and the concentration varied little after the first day due to near balance between diffusion and consumption. Pyrite oxidation and hence the formation of acidity in the peds was modelled using a first-order chain reaction based on oxygen concentration. This resulting in a slow increase in Fe concentration with time (Figure 2). Various scenarios were tested to describe rewetting and hence transport of acidity to the lake; a rising water table with seepage from the crack and surface, inundation of the surface and crack, and water flow into the ped from the crack and seepage at the surface. These were compared to simulations of the sediment without cracks as a control, with two rewetting scenarios: rewetting due to watertable rise, and surface inundation. The mass of acidity generated from oxidation of pyrite was most sensitive to increasing ped radius, and then linearly with time. Acid generation within the peds was greater than in sediment without cracks. The scenario where the water table rose from below resulted in the most acidity transported from the soil to the lake water, while the scenario where both the surface of the ped and crack were instantaneous inundated resulted in the least acidity transported to the lake water. These results have implications for how lake rewetting is allowed to occur
- …