14 research outputs found

    Occurrence and characterization of a severe isolate of Watermelon mosaic virus from Argentina

    Get PDF
    More than 50 viruses have been reported in cucurbit crops worldwide. In Argentina, cucurbit viruses have been associated with important yield losses. The most prevalent and widespread potyvirus is Watermelon mosaic virus (WMV). WMV was detected in Argentina in all cucurbit species with high incidence. In this study, a WMV isolate (WMV 1 SDE FF) was obtained from a naturally infected squash associated with a severe outbreak on melon and squash crops in an important cucurbit growing area in Santiago del Estero province (Argentina), during a survey conducted in November 2012. The fully sequenced WMV 1 SDE FF genome consists of 10,027 nucleotides and shares 96 % nt identity and 98 % aa identity with the French isolates JF273464.1|C07–014 and EU660581.1|FMF00-LL1 of the WMV molecular group 3. Using the recombination detection program RDP4, two statistically significant recombination events were identified: event 1, an 830-nt long recombinant fragment in the putative P1 coding region, and event 2, a 4071-nt recombinant fragment detected across the HC Pro, P3 and CI coding regions. The putative parental sequences detected for event 1 were the EU660586.1| FBR04–37 (major parent) and JF273468.1|C07–284 (minor parent), both from France. Putative parental sequences for event 2 were JX079685.1| WMV-ShanXi (major parent) and HQ384216.1|Dendrobium (minor parent), from China and USA, respectively. To our knowledge, this is the first complete genome of an Argentine WMV isolate. Our results provide evidence that WMV 1 SDE FF is the causal agent of the strong outbreak reported in melon and squash fields in recent years.Inst. Patología VegetalFil: Perotto, Maria Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Celli, Marcos Giovani. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pozzi, Elizabeth Alicia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Luciani, Cecilia E. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Conci, Vilma Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Implementación de RT-LAMP para la detección de Strawberrymottle virus en Argentina

    Get PDF
    Strawberrymottle virus (SMoV) es uno de los virus más importantes a nivel mundial enel cultivo de frutilla. La técnica de detección utilizada en Argentina para el diagnósticode SMoV es la reacción en cadena de la polimerasa con transcripción reversa (RT-PCR). El diagnóstico del virus mediante esta técnica presenta dificultades, ya que escompleja y costosa. Recientemente, en China, SMoV fue detectado por amplificaciónisotérmica mediada por bucles (loop-mediatedisothermalamplificationassay, LAMP),cuyas principales ventajas son la alta sensibilidad, detección rápida y fácilfuncionamiento. El objetivo de este trabajo fue implementar la RT-LAMP para eldiagnóstico de SMoV en el cultivo de frutilla en Argentina. Se extrajeron los ácidosnucleicos totales por el método CTAB con modificaciones de dos plantas negativas yocho plantas positivas por RT-PCR a SMoV. Se utilizaron cebadores FIP/BIP F3/B3 yapublicados para la detección del virus, Bst DNA polimerasa (NEB) y AMV (Promega)para la transcripción reversa. La reacción se incubó durante una hora a 62oC y se tiñócon 1ul de SYBR Green I (Invitrogen).Además, 5 ul de producto de cada reacción secorrió por electroforesis en un gel de agarosa 1%. Los resultados mostraronfluorescencia en las plantas positivas a SMoV previamente testeadas y amplicones enel gel de agarosa. La RT-LAMP se implementó exitosamente y fue específica paraSMoV, con lo cual se recomienda su utilización como herramienta práctica para elrápido diagnóstico en muestras de campo, y para el control de producción de materiallibre de virus en el país.Fil: Luciani, Cecilia Elizabeth. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; ArgentinaFil: Celli, Marcos Giovani. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; ArgentinaFil: Brugo, M. F.. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; ArgentinaFil: Pozzi, E. A.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Marcos Juárez; ArgentinaFil: Conci, Vilma Cecilia. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; ArgentinaFil: Perotto, Maria Cecilia. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; Argentina41º Congreso Argentino de Horticultura y V Simposio de Aromáticas, Medicinales y CondimenticiasLa PlataArgentinaAsociación Argentina de Horticultur

    Profiling of Flavonol Derivatives for the Development of Antitrypanosomatidic Drugs

    Get PDF
    Flavonoids represent a potential source of new antitrypanosomatidic leads. Starting from a library of natural products, we combined target-based screening on pteridine reductase 1 with phenotypic screening on Trypanosoma brucei for hit identification. Flavonols were identified as hits, and a library of 16 derivatives was synthesized. Twelve compounds showed EC50 values against T. brucei below 10 \u3bcM. Four X-ray crystal structures and docking studies explained the observed structure-activity relationships. Compound 2 (3,6-dihydroxy-2-(3-hydroxyphenyl)-4H-chromen-4-one) was selected for pharmacokinetic studies. Encapsulation of compound 2 in PLGA nanoparticles or cyclodextrins resulted in lower in vitro toxicity when compared to the free compound. Combination studies with methotrexate revealed that compound 13 (3-hydroxy-6-methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one) has the highest synergistic effect at concentration of 1.3 \u3bcM, 11.7-fold dose reduction index and no toxicity toward host cells. Our results provide the basis for further chemical modifications aimed at identifying novel antitrypanosomatidic agents showing higher potency toward PTR1 and increased metabolic stability

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Molecular characterization of the garlic virus B genome and evidence of allexivirus recombination

    No full text
    Molecular characterization is important for differentiating allexiviruses species, since detection by serological methods may be uncertain. Eight different species have been reported as infecting garlic: Garlic virus A, B, C, D, E, X (GarV-A, B, C, D, E, X), Shallot virus X (ShVX) and Garlic mite-borne filamentous virus (GarMbFV), and the complete genome is known for six of these. This work reports for the first time the complete sequence of GarV-B and makes a phylogenetic and recombination analysis between the different allexivirus species. Total RNA was obtained of a GarV-B positive garlic plant by ISEM-D using anti-GarV-B antiserum and this was sent for mass sequencing. Deep sequencing revealed the first complete GarV-B genome, consisting of 8327 nucleotides (nt). The genome contained six open reading frames (ORFs) with the typical genome organization which encodes putative proteins of 168 kDa (ORF1), 27 kDa (ORF2), 12 kDa (ORF3), 39 kDa (ORF4), 27 kDa (ORF5) and 14 kDa (ORF6). The comparison of the gene coding for the coat protein of the virus showed a greater identity of nt with other isolates of GarV-B (88.4 to 99.7%) and of GarV-X (75.4 to 78.3%) published in GenBank. The GarV-B replicase gene has not been previously reported in GenBank, so the sequence was compared with GarV-A, -C, −D, −E, −X and ShVX. The highest nt identity values were detected with isolates of GarV-X (73.5 to 74.1%) and GarV-C (71.9 to 72.8%). These results suggest that GarV-X and GarV-B may be different strains of the same virus. A genetic recombination analysis was also performed between the complete sequences of allexiviruses published and obtained in this work and it was detected that the species GarV-D and GarV-E may have arisen from the recombination of the N-terminal portion of GarV-B with the C-terminal portion of GarV-A.Instituto de Patología VegetalFil: Celli, Marcos Giovani. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Perotto, Maria Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Luciani, Cecilia E. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pozzi, Elizabeth Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Conci, Vilma Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Advances in characterization and epidemiology of strawberry viruses and phytoplasmas in Argentina

    No full text
    The presence of systemic pathogens, such as viruses and phytoplasmas, in strawberry plants is the usual situation worldwide. More than 20 virus species and 6 phytoplasmas 16Sr groups have been cited infecting strawberries in different countries. Petiole-insert leaflet grafting to strawberry virus indicator plants Fragaria vesca var. semperflorens (Duch.) 'Alpine', F. vesca 'UC5' and F. virginiana 'UC12', has allowed detecting the presence of virus in strawberry plants collected from commercial farms in several locations of Argentina. Strawberry mild yellow edge virus (SMYEV), Strawberry mottle virus (SMoV), Strawberry crinkle virus (SCV) and Strawberry polerovirus 1 (SPV1) have been identified and characterized using reverse transcription polymerase chain reaction (RT-PCR) with specific primers and sequencing parts, or complete genome of the viruses. These viruses have been detected in different producing regions, in simple or mixed infections. In parallel, numerous species of aphids (virus vectors), such as Aphis forbesi Weed, A. gossypii Glover, Chaetosiphon fragaefolii (Cockerell), C. minor (Forbes), C. thomasi Hille Ris Lambers, Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer), have also been found. Two different phytoplasmas have been detected in strawberry in Argentina up to now. Argentinean Strawberry Phyllody (ASP) and Strawberry red leaf (StrawRL) phytoplasmas. The Instituto Nacional de Tecnologia Agropecuaria (INTA) from Argentina has implemented a pathogen-free plants production program, where plants are obtained by meristem culture in vitro, and then they are transferred to ex vitro conditions to the screenhouses under controlled environmental conditions. All the plants obtained are tested for virus and phytoplasm by grafting to indicator plants, RT-PCR with specific primer for viruses and PCR for phytoplasmas. The plants with negative results to the tests performed are propagated in a greater scale in isolated area (nurseries). This methodology allows not only increasing fruit yield but also contributes to prevent pathogen dispersionFil: Conci, Vilma Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Luciani, Cecilia E. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Merino, M.C. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Celli, Marcos Giovani. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Perotto, Maria Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torrico Ramallo, Ada Karina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Pozzi, E. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Strumia, Gisella. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Dughetti, Arturo Carlos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Asinari, Florencia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Conci, Luis Rogelio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Fernandez, Franco Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Salazar, Sergio Miguel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; ArgentinaFil: Meneguzzi, Natalia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; ArgentinaFil: Kirschbaum, Daniel Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; Argentin
    corecore