806 research outputs found

    The Nature of Compact Galaxies in the Hubble Deep Field (II): Spectroscopic Properties and Implications for the Evolution of the Star Formation Rate Density of the Universe

    Get PDF
    We present a spectroscopic study of 51 compact field galaxies with redshifts z < 1.4 and apparent magnitudes I < 23.74 in the flanking fields of the Hubble Deep Field. These galaxies are compact in the sense that they have small apparent half-light radii (r_e < 0.5 arcsec) and high surface brightnesses (SB_e < 22.2 mag arcsec^-2). The spectra, taken at the Keck telescope, show emission lines in 88% of our sample, and only absorption lines in the remaining 12%. Emission-line profiles are roughly Gaussian with velocity widths that range from the measurement limit of sigma = 35 km s^-1 to 150 km s^-1. Rest-frame [OII]3727 equivalent widths range from 5A to 94A , yielding star formation rates (SFR) of 0.1 to 14 M yr^-1. The analysis of various line diagnostic diagrams reveals that 60% of compact emission-line galaxies have velocity widths, excitations, Hbeta luminosities, SFRs, and mass-to-light ratios characteristic of young star-forming HII galaxies. The remaining 40% form a more heterogeneous class of evolved starbursts, similar to local starburst disk galaxies. We find that, although the compact galaxies at z>0.7 have similar SFRs per unit mass to those at z<0.7, they are on average 10 times more massive. Our sample implies a lower limit for the global comoving SFR density of 0.004 M yr^-1 Mpc^-3 at z = 0.55, and 0.008 M yr^-1 Mpc^-3 at z = 0.85 (assuming Salpeter IMF, Ho = 50 km s^-1 Mpc^-1, and qo = 0.5). These values, when compared to estimates for a sample of local compact galaxies selected in a similar fashion, support a history of the universe in which the SFR density declines by a factor 10 from z = 1 to today.Comment: LaTeX, 38 pages, 2 tables, 10 postscript figures. Accepted for publication in the Astrophysical Journa

    Deep 1.1 mm-wavelength imaging of the GOODS-South field by AzTEC/ASTE -- II. Redshift distribution and nature of the submillimetre galaxy population

    Get PDF
    We report the results of the counterpart identification and a detailed analysis of the physical properties of the 48 sources discovered in our deep 1.1mm wavelength imaging survey of the GOODS-South field using the AzTEC instrument on the Atacama Submillimeter Telescope Experiment (ASTE). One or more robust or tentative counterpart candidate is found for 27 and 14 AzTEC sources, respectively, by employing deep radio continuum, Spitzer MIPS & IRAC, and LABOCA 870 micron data. Five of the sources (10%) have two robust counterparts each, supporting the idea that these galaxies are strongly clustered and/or heavily confused. Photometric redshifts and star formation rates (SFRs) are derived by analyzing UV-to-optical and IR-to-radio SEDs. The median redshift of z~2.6 is similar to other earlier estimates, but we show that 80% of the AzTEC-GOODS sources are at z>2, with a significant high redshift tail (20% at z>3.3). Rest-frame UV and optical properties of AzTEC sources are extremely diverse, spanning 10 magnitude in the i- and K-band photometry with median values of i=25.3 and K=22.6 and a broad range of red colour (i-K=0-6). These AzTEC sources are some of the most luminous galaxies in the rest-frame optical bands at z>2, with inferred stellar masses of (1-30) x 10^{10} solar masses and UV-derived star formation rates of SFR(UV) > 10-1000 solar masses per year. The IR-derived SFR, 200-2000 solar masses per year, is independent of redshift or stellar mass. The resulting specific star formation rates, SSFR = 1-100 per Gyr, are 10-100 times higher than similar mass galaxies at z=0, and they extend the previously observed rapid rise in the SSFR with redshift to z=2-5. These galaxies have a SFR high enough to have built up their entire stellar mass within their Hubble time. We find only marginal evidence for an AGN contribution to the near-IR and mid-IR SEDs. (abridged)Comment: 31 pages including 14 figures, accepted for publication in the MNRAS. A higher quality Figure 1 is also included as Figure1.jp

    Properties of Ly-alpha and Gamma Ray Burst selected starbursts at high redshifts

    Full text link
    Selection of starbursts through either deep narrow band imaging of redshifted Ly-alpha emitters, or localisation of host galaxies of gamma-ray bursts both give access to starburst galaxies that are significantly fainter than what is currently available from selection techniques based on the continuum (such as Lyman-break selection). We here present results from a survey for Ly-alpha emitters at z=3, conducted at the European Southern Observatory's Very Large Telescope. Furthermore, we briefly describe the properties of host galaxies of gamma-ray bursts at z>2. The majority of both Ly-alpha and gamma-ray burst selected starbursts are fainter than the flux limit of the Lyman-break galaxy sample, suggesting that a significant fraction of the integrated star formation at z~3 is located in galaxies at the faint end of the luminosity function.Comment: invited talk, 6 pages, 3 figures, to appear in ``Starbursts from 30 Doradus to Lyman Break Galaxies'', eds. R. de Grijs, R. M. Gonzalez Delgado, Astrophysics & Space Science Library Series, Kluwer (in press

    3D Spectroscopy of Local Luminous Compact Blue Galaxies: Kinematics of NGC 7673

    Get PDF
    The kinematic properties of the ionized gas of local Luminous Compact Blue Galaxy (LCBG) NGC 7673 are presented using three dimensional data taken with the PPAK integral field unit at the 3.5-m telescope in the Centro Astron\'omico Hispano Alem\'an. Our data reveal an asymmetric rotating velocity field with a peak to peak difference of 60 km s1^{-1}. The kinematic centre is found to be at the position of a central velocity width maximum (σ=54±1\sigma=54\pm1 km s1^{-1}), which is consistent with the position of the luminosity-weighted centroid of the entire galaxy. The position angle of the minor rotation axis is 168^{\circ} as measured from the orientation of the velocity field contours. At least two decoupled kinematic components are found. The first one is compact and coincides with the position of the second most active star formation region (clump B). The second one is extended and does not have a clear optical counterpart. No evidence of active galactic nuclei activity or supernovae galactic winds powering any of these two components has been found. Our data, however, show evidence in support of a previously proposed minor merger scenario in which a dwarf galaxy, tentatively identified with clump B, is falling into NGC 7673. and triggers the starburst. Finally, it is shown that the dynamical mass of this galaxy may be severely underestimated when using the derived rotation curve or the integrated velocity width, under the assumption of virialization.Comment: Accepted for publication by MNRAS. The paper contains 10 figures and 2 table

    AzTEC Millimetre Survey of the COSMOS Field - II. Source Count Overdensity and Correlations with Large-Scale Structure

    Get PDF
    We report an over-density of bright sub-millimetre galaxies (SMGs) in the 0.15 sq. deg. AzTEC/COSMOS survey and a spatial correlation between the SMGs and the optical-IR galaxy density at z <~ 1.1. This portion of the COSMOS field shows a ~ 3-sigma over-density of robust SMG detections when compared to a background, or "blankfield", population model that is consistent with SMG surveys of fields with no extragalactic bias. The SMG over-density is most significant in the number of very bright detections (14 sources with measured fluxes S(1.1mm) > 6 mJy), which is entirely incompatible with sample variance within our adopted blank-field number densities and infers an over-density significance of >> 4. We find that the over-density and spatial correlation to optical-IR galaxy density are most consistent with lensing of a background SMG population by foreground mass structures along the line of sight, rather than physical association of the SMGs with the z <~ 1.1 galaxies/clusters. The SMG positions are only weakly correlated with weak-lensing maps, suggesting that the dominant sources of correlation are individual galaxies and the more tenuous structures in the region and not the massive and compact clusters. These results highlight the important roles cosmic variance and large-scale structure can play in the study of SMGs.Comment: 12 pages, 11 figures, 2 tables, accepted for publication in MNRA

    The AzTEC/SMA Interferometric Imaging Survey of Submillimeter-Selected High-Redshift Galaxies

    Get PDF
    We present results from a continuing interferometric survey of high-redshift submillimeter galaxies with the Submillimeter Array, including high-resolution (beam size ~2 arcsec) imaging of eight additional AzTEC 1.1mm selected sources in the COSMOS Field, for which we obtain six reliable (peak S/N>5 or peak S/N>4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N>4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric followup. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology - including the nature of submillimeter galaxies with multiple radio counterparts and constraints on the physical scale of the far infrared - of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim submillimeter galaxies that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation - which struggle to account for such objects even under liberal assumptions - and dust production models given the limited time since the Big Bang.Comment: 11 pages, 7 figures, accepted for publication in Ap

    Near-Infrared Galaxy Counts to J and K ~ 24 as a Function of Image Size

    Get PDF
    We have used the Keck 10m telescope to count objects as a function of image size in 2 high galactic latitude fields covering 1.5 arcmin^2 and reaching 50% completeness at K=24 and J=24.5 for stellar sources. Counts extend ~1 mag deeper in K than surveys with other telescopes; complement Keck surveys providing counts at comparable or shallower depths but not utilizing image structure; and extend by several magnitudes the J band counts from other surveys. We find the surface-density of objects at K=23 to be higher than previously found (~500,000/mag/deg^2), but at K<22 to be consistent with most other surveys in amplitude and slope (~0.36). J band counts have similar slope. J and K counts are in excess of our empirical no-evolution models for an open universe, and a factor of 2 higher than mild-evolution models at J and K ~ 23. The slope of the model counts is insensitive to geometry even in the near-infrared because the counts are dominated by low-luminosity (<0.1L*) objects at modest redshift (z<1) with small apparent sizes (r05<0.4", i.e. <4 kpc). The observed counts rise most steeply for these smaller objects, which dominate fainter than K=22.3 and J=23.3. However, the greatest excess relative to no-evolution models occurs for the apparently larger objects (median J-K~1.5). The size and colors of such objects correspond equally well to luminous (>0.1L*), galaxies at 1<z<4, or progressively more diffuse, low-luminosity (0.001-0.1L*) galaxies at z<1. We rule out the excess is from very low luminosity (<0.0001L*) red galaxies at z<0.25. There is a deficit of galaxies with red J-K colors corresponding to luminous, early-type galaxies at 1<z<3. Assuming the deficit is due to their appearance as blue galaxies, they account only for 10-30% of the excess of large, blue galaxies. [abridged]Comment: accepted for publication in ApJ; 34 pages text, 9 tables, 10 figures (embedded); full resolution figures available at http://www.astro.wisc.edu/~mab/publications/pub.htm

    A blot on the landscape? Civic memory and municipal public parks in early twentieth century Manchester

    Get PDF
    This paper examines the decision to locate the façade of Manchester’s old Town Hall in a public park (Heaton Park) in 1912. It argues that, in so doing, the city’s Parks and Cemeteries committee was attempting to refine the didactic space of the park as a site of civic memory. The early Victorian urban parks had sought to educate their visitors through their museums, art galleries and exhibition spaces, glasshouses and carefully-planned and planted walkways. The insertion into this environment of part of a former civic building was intended to remind the visitors of their civic history and to warn surrounding districts of the expansionist tendencies of the city of Manchester. The failure to identify the façade or to connect it to its surroundings meant that its meaning was ultimately lost to many parks visitors and it remained in place as a civic folly. Public parks presented the municipal authorities with an opportunity to highlight the provision of recreation and leisure facilities, but also an occasion to re-invent the municipal tradition. However, as this paper shows, such gestures were often futile in the complex and contested space of the public park

    The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    Get PDF
    We describe the design and data sample from the DEEP2 Galaxy Redshift Survey, the densest and largest precision-redshift survey of galaxies at z ~ 1 completed to date. The survey has conducted a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M_B = -20 at z ~ 1 via ~90 nights of observation on the DEIMOS spectrograph at Keck Observatory. DEEP2 covers an area of 2.8 deg^2 divided into four separate fields, observed to a limiting apparent magnitude of R_AB=24.1. Objects with z < 0.7 are rejected based on BRI photometry in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted ~2.5 times more efficiently than in a purely magnitude-limited sample. Approximately sixty percent of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets which fail to yield secure redshifts are blue objects that lie beyond z ~ 1.45. The DEIMOS 1200-line/mm grating used for the survey delivers high spectral resolution (R~6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. DEEP2 surpasses other deep precision-redshift surveys at z ~ 1 in terms of galaxy numbers, redshift accuracy, sample number density, and amount of spectral information. We also provide an overview of the scientific highlights of the DEEP2 survey thus far. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the publicly-available DEEP2 DEIMOS data reduction pipelines. [Abridged]Comment: submitted to ApJS; data products available for download at http://deep.berkeley.edu/DR4
    corecore